001/** 002 * Licensed to the Apache Software Foundation (ASF) under one 003 * or more contributor license agreements. See the NOTICE file 004 * distributed with this work for additional information 005 * regarding copyright ownership. The ASF licenses this file 006 * to you under the Apache License, Version 2.0 (the 007 * "License"); you may not use this file except in compliance 008 * with the License. You may obtain a copy of the License at 009 * 010 * http://www.apache.org/licenses/LICENSE-2.0 011 * 012 * Unless required by applicable law or agreed to in writing, software 013 * distributed under the License is distributed on an "AS IS" BASIS, 014 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 015 * See the License for the specific language governing permissions and 016 * limitations under the License. 017 */ 018package org.apache.hadoop.hbase.regionserver.wal; 019 020import static org.apache.hadoop.hbase.util.ConcurrentMapUtils.computeIfAbsent; 021 022import java.util.ArrayList; 023import java.util.Collections; 024import java.util.HashMap; 025import java.util.List; 026import java.util.Map; 027import java.util.Set; 028import java.util.concurrent.ConcurrentHashMap; 029import java.util.concurrent.ConcurrentMap; 030import java.util.stream.Collectors; 031import org.apache.hadoop.hbase.HConstants; 032import org.apache.hadoop.hbase.util.Bytes; 033import org.apache.hadoop.hbase.util.ImmutableByteArray; 034import org.apache.yetus.audience.InterfaceAudience; 035import org.slf4j.Logger; 036import org.slf4j.LoggerFactory; 037 038import org.apache.hbase.thirdparty.com.google.common.annotations.VisibleForTesting; 039 040/** 041 * Accounting of sequence ids per region and then by column family. So we can keep our accounting 042 * current, call startCacheFlush and then finishedCacheFlush or abortCacheFlush so this instance can 043 * keep abreast of the state of sequence id persistence. Also call update per append. 044 * <p> 045 * For the implementation, we assume that all the {@code encodedRegionName} passed in are gotten by 046 * {@link org.apache.hadoop.hbase.client.RegionInfo#getEncodedNameAsBytes()}. So it is safe to use 047 * it as a hash key. And for family name, we use {@link ImmutableByteArray} as key. This is because 048 * hash based map is much faster than RBTree or CSLM and here we are on the critical write path. See 049 * HBASE-16278 for more details. 050 * </p> 051 */ 052@InterfaceAudience.Private 053class SequenceIdAccounting { 054 private static final Logger LOG = LoggerFactory.getLogger(SequenceIdAccounting.class); 055 056 /** 057 * This lock ties all operations on {@link SequenceIdAccounting#flushingSequenceIds} and 058 * {@link #lowestUnflushedSequenceIds} Maps. {@link #lowestUnflushedSequenceIds} has the 059 * lowest outstanding sequence ids EXCEPT when flushing. When we flush, the current 060 * lowest set for the region/column family are moved (atomically because of this lock) to 061 * {@link #flushingSequenceIds}. 062 * 063 * <p>The two Maps are tied by this locking object EXCEPT when we go to update the lowest 064 * entry; see {@link #lowestUnflushedSequenceIds}. In here is a putIfAbsent call on 065 * {@link #lowestUnflushedSequenceIds}. In this latter case, we will add this lowest 066 * sequence id if we find that there is no entry for the current column family. There will be no 067 * entry only if we just came up OR we have moved aside current set of lowest sequence ids 068 * because the current set are being flushed (by putting them into {@link #flushingSequenceIds}). 069 * This is how we pick up the next 'lowest' sequence id per region per column family to be used 070 * figuring what is in the next flush. 071 */ 072 private final Object tieLock = new Object(); 073 074 /** 075 * Map of encoded region names and family names to their OLDEST -- i.e. their first, 076 * the longest-lived, their 'earliest', the 'lowest' -- sequence id. 077 * 078 * <p>When we flush, the current lowest sequence ids get cleared and added to 079 * {@link #flushingSequenceIds}. The next append that comes in, is then added 080 * here to {@link #lowestUnflushedSequenceIds} as the next lowest sequenceid. 081 * 082 * <p>If flush fails, currently server is aborted so no need to restore previous sequence ids. 083 * <p>Needs to be concurrent Maps because we use putIfAbsent updating oldest. 084 */ 085 private final ConcurrentMap<byte[], ConcurrentMap<ImmutableByteArray, Long>> 086 lowestUnflushedSequenceIds = new ConcurrentHashMap<>(); 087 088 /** 089 * Map of encoded region names and family names to their lowest or OLDEST sequence/edit id 090 * currently being flushed out to hfiles. Entries are moved here from 091 * {@link #lowestUnflushedSequenceIds} while the lock {@link #tieLock} is held 092 * (so movement between the Maps is atomic). 093 */ 094 private final Map<byte[], Map<ImmutableByteArray, Long>> flushingSequenceIds = new HashMap<>(); 095 096 /** 097 * <p> 098 * Map of region encoded names to the latest/highest region sequence id. Updated on each call to 099 * append. 100 * </p> 101 * <p> 102 * This map uses byte[] as the key, and uses reference equality. It works in our use case as we 103 * use {@link org.apache.hadoop.hbase.client.RegionInfo#getEncodedNameAsBytes()} as keys. For a 104 * given region, it always returns the same array. 105 * </p> 106 */ 107 private Map<byte[], Long> highestSequenceIds = new HashMap<>(); 108 109 /** 110 * Returns the lowest unflushed sequence id for the region. 111 * @return Lowest outstanding unflushed sequenceid for <code>encodedRegionName</code>. Will 112 * return {@link HConstants#NO_SEQNUM} when none. 113 */ 114 long getLowestSequenceId(final byte[] encodedRegionName) { 115 synchronized (this.tieLock) { 116 Map<?, Long> m = this.flushingSequenceIds.get(encodedRegionName); 117 long flushingLowest = m != null ? getLowestSequenceId(m) : Long.MAX_VALUE; 118 m = this.lowestUnflushedSequenceIds.get(encodedRegionName); 119 long unflushedLowest = m != null ? getLowestSequenceId(m) : HConstants.NO_SEQNUM; 120 return Math.min(flushingLowest, unflushedLowest); 121 } 122 } 123 124 /** 125 * @return Lowest outstanding unflushed sequenceid for <code>encodedRegionname</code> and 126 * <code>familyName</code>. Returned sequenceid may be for an edit currently being 127 * flushed. 128 */ 129 long getLowestSequenceId(final byte[] encodedRegionName, final byte[] familyName) { 130 ImmutableByteArray familyNameWrapper = ImmutableByteArray.wrap(familyName); 131 synchronized (this.tieLock) { 132 Map<ImmutableByteArray, Long> m = this.flushingSequenceIds.get(encodedRegionName); 133 if (m != null) { 134 Long lowest = m.get(familyNameWrapper); 135 if (lowest != null) { 136 return lowest; 137 } 138 } 139 m = this.lowestUnflushedSequenceIds.get(encodedRegionName); 140 if (m != null) { 141 Long lowest = m.get(familyNameWrapper); 142 if (lowest != null) { 143 return lowest; 144 } 145 } 146 } 147 return HConstants.NO_SEQNUM; 148 } 149 150 /** 151 * Reset the accounting of highest sequenceid by regionname. 152 * @return Return the previous accounting Map of regions to the last sequence id written into 153 * each. 154 */ 155 Map<byte[], Long> resetHighest() { 156 Map<byte[], Long> old = this.highestSequenceIds; 157 this.highestSequenceIds = new HashMap<>(); 158 return old; 159 } 160 161 /** 162 * We've been passed a new sequenceid for the region. Set it as highest seen for this region and 163 * if we are to record oldest, or lowest sequenceids, save it as oldest seen if nothing 164 * currently older. 165 * @param encodedRegionName 166 * @param families 167 * @param sequenceid 168 * @param lowest Whether to keep running account of oldest sequence id. 169 */ 170 void update(byte[] encodedRegionName, Set<byte[]> families, long sequenceid, 171 final boolean lowest) { 172 Long l = Long.valueOf(sequenceid); 173 this.highestSequenceIds.put(encodedRegionName, l); 174 if (lowest) { 175 ConcurrentMap<ImmutableByteArray, Long> m = getOrCreateLowestSequenceIds(encodedRegionName); 176 for (byte[] familyName : families) { 177 m.putIfAbsent(ImmutableByteArray.wrap(familyName), l); 178 } 179 } 180 } 181 182 /** 183 * Clear all the records of the given region as it is going to be closed. 184 * <p/> 185 * We will call this once we get the region close marker. We need this because that, if we use 186 * Durability.ASYNC_WAL, after calling startCacheFlush, we may still get some ongoing wal entries 187 * that has not been processed yet, this will lead to orphan records in the 188 * lowestUnflushedSequenceIds and then cause too many WAL files. 189 * <p/> 190 * See HBASE-23157 for more details. 191 */ 192 void onRegionClose(byte[] encodedRegionName) { 193 synchronized (tieLock) { 194 this.lowestUnflushedSequenceIds.remove(encodedRegionName); 195 Map<ImmutableByteArray, Long> flushing = this.flushingSequenceIds.remove(encodedRegionName); 196 if (flushing != null) { 197 LOG.warn("Still have flushing records when closing {}, {}", 198 Bytes.toString(encodedRegionName), 199 flushing.entrySet().stream().map(e -> e.getKey().toString() + "->" + e.getValue()) 200 .collect(Collectors.joining(",", "{", "}"))); 201 } 202 } 203 this.highestSequenceIds.remove(encodedRegionName); 204 } 205 206 /** 207 * Update the store sequence id, e.g., upon executing in-memory compaction 208 */ 209 void updateStore(byte[] encodedRegionName, byte[] familyName, Long sequenceId, 210 boolean onlyIfGreater) { 211 if (sequenceId == null) { 212 return; 213 } 214 Long highest = this.highestSequenceIds.get(encodedRegionName); 215 if (highest == null || sequenceId > highest) { 216 this.highestSequenceIds.put(encodedRegionName, sequenceId); 217 } 218 ImmutableByteArray familyNameWrapper = ImmutableByteArray.wrap(familyName); 219 synchronized (this.tieLock) { 220 ConcurrentMap<ImmutableByteArray, Long> m = getOrCreateLowestSequenceIds(encodedRegionName); 221 boolean replaced = false; 222 while (!replaced) { 223 Long oldSeqId = m.get(familyNameWrapper); 224 if (oldSeqId == null) { 225 m.put(familyNameWrapper, sequenceId); 226 replaced = true; 227 } else if (onlyIfGreater) { 228 if (sequenceId > oldSeqId) { 229 replaced = m.replace(familyNameWrapper, oldSeqId, sequenceId); 230 } else { 231 return; 232 } 233 } else { // replace even if sequence id is not greater than oldSeqId 234 m.put(familyNameWrapper, sequenceId); 235 return; 236 } 237 } 238 } 239 } 240 241 @VisibleForTesting 242 ConcurrentMap<ImmutableByteArray, Long> getOrCreateLowestSequenceIds(byte[] encodedRegionName) { 243 // Intentionally, this access is done outside of this.regionSequenceIdLock. Done per append. 244 return computeIfAbsent(this.lowestUnflushedSequenceIds, encodedRegionName, 245 ConcurrentHashMap::new); 246 } 247 248 /** 249 * @param sequenceids Map to search for lowest value. 250 * @return Lowest value found in <code>sequenceids</code>. 251 */ 252 private static long getLowestSequenceId(Map<?, Long> sequenceids) { 253 long lowest = HConstants.NO_SEQNUM; 254 for (Long sid: sequenceids.values()) { 255 if (lowest == HConstants.NO_SEQNUM || sid.longValue() < lowest) { 256 lowest = sid.longValue(); 257 } 258 } 259 return lowest; 260 } 261 262 /** 263 * @param src 264 * @return New Map that has same keys as <code>src</code> but instead of a Map for a value, it 265 * instead has found the smallest sequence id and it returns that as the value instead. 266 */ 267 private <T extends Map<?, Long>> Map<byte[], Long> flattenToLowestSequenceId(Map<byte[], T> src) { 268 if (src == null || src.isEmpty()) { 269 return null; 270 } 271 Map<byte[], Long> tgt = new HashMap<>(); 272 for (Map.Entry<byte[], T> entry : src.entrySet()) { 273 long lowestSeqId = getLowestSequenceId(entry.getValue()); 274 if (lowestSeqId != HConstants.NO_SEQNUM) { 275 tgt.put(entry.getKey(), lowestSeqId); 276 } 277 } 278 return tgt; 279 } 280 281 /** 282 * @param encodedRegionName Region to flush. 283 * @param families Families to flush. May be a subset of all families in the region. 284 * @return Returns {@link HConstants#NO_SEQNUM} if we are flushing the whole region OR if 285 * we are flushing a subset of all families but there are no edits in those families not 286 * being flushed; in other words, this is effectively same as a flush of all of the region 287 * though we were passed a subset of regions. Otherwise, it returns the sequence id of the 288 * oldest/lowest outstanding edit. 289 */ 290 Long startCacheFlush(final byte[] encodedRegionName, final Set<byte[]> families) { 291 Map<byte[],Long> familytoSeq = new HashMap<>(); 292 for (byte[] familyName : families){ 293 familytoSeq.put(familyName,HConstants.NO_SEQNUM); 294 } 295 return startCacheFlush(encodedRegionName,familytoSeq); 296 } 297 298 Long startCacheFlush(final byte[] encodedRegionName, final Map<byte[], Long> familyToSeq) { 299 Map<ImmutableByteArray, Long> oldSequenceIds = null; 300 Long lowestUnflushedInRegion = HConstants.NO_SEQNUM; 301 synchronized (tieLock) { 302 Map<ImmutableByteArray, Long> m = this.lowestUnflushedSequenceIds.get(encodedRegionName); 303 if (m != null) { 304 // NOTE: Removal from this.lowestUnflushedSequenceIds must be done in controlled 305 // circumstance because another concurrent thread now may add sequenceids for this family 306 // (see above in getOrCreateLowestSequenceId). Make sure you are ok with this. Usually it 307 // is fine because updates are blocked when this method is called. Make sure!!! 308 for (Map.Entry<byte[], Long> entry : familyToSeq.entrySet()) { 309 ImmutableByteArray familyNameWrapper = ImmutableByteArray.wrap((byte[]) entry.getKey()); 310 Long seqId = null; 311 if(entry.getValue() == HConstants.NO_SEQNUM) { 312 seqId = m.remove(familyNameWrapper); 313 } else { 314 seqId = m.replace(familyNameWrapper, entry.getValue()); 315 } 316 if (seqId != null) { 317 if (oldSequenceIds == null) { 318 oldSequenceIds = new HashMap<>(); 319 } 320 oldSequenceIds.put(familyNameWrapper, seqId); 321 } 322 } 323 if (oldSequenceIds != null && !oldSequenceIds.isEmpty()) { 324 if (this.flushingSequenceIds.put(encodedRegionName, oldSequenceIds) != null) { 325 LOG.warn("Flushing Map not cleaned up for " + Bytes.toString(encodedRegionName) + 326 ", sequenceid=" + oldSequenceIds); 327 } 328 } 329 if (m.isEmpty()) { 330 // Remove it otherwise it will be in oldestUnflushedStoreSequenceIds for ever 331 // even if the region is already moved to other server. 332 // Do not worry about data racing, we held write lock of region when calling 333 // startCacheFlush, so no one can add value to the map we removed. 334 this.lowestUnflushedSequenceIds.remove(encodedRegionName); 335 } else { 336 // Flushing a subset of the region families. Return the sequence id of the oldest entry. 337 lowestUnflushedInRegion = Collections.min(m.values()); 338 } 339 } 340 } 341 // Do this check outside lock. 342 if (oldSequenceIds != null && oldSequenceIds.isEmpty()) { 343 // TODO: if we have no oldStoreSeqNum, and WAL is not disabled, presumably either 344 // the region is already flushing (which would make this call invalid), or there 345 // were no appends after last flush, so why are we starting flush? Maybe we should 346 // assert not empty. Less rigorous, but safer, alternative is telling the caller to stop. 347 // For now preserve old logic. 348 LOG.warn("Couldn't find oldest sequenceid for " + Bytes.toString(encodedRegionName)); 349 } 350 return lowestUnflushedInRegion; 351 } 352 353 void completeCacheFlush(final byte[] encodedRegionName) { 354 synchronized (tieLock) { 355 this.flushingSequenceIds.remove(encodedRegionName); 356 } 357 } 358 359 void abortCacheFlush(final byte[] encodedRegionName) { 360 // Method is called when we are crashing down because failed write flush AND it is called 361 // if we fail prepare. The below is for the fail prepare case; we restore the old sequence ids. 362 Map<ImmutableByteArray, Long> flushing = null; 363 Map<ImmutableByteArray, Long> tmpMap = new HashMap<>(); 364 // Here we are moving sequenceids from flushing back to unflushed; doing opposite of what 365 // happened in startCacheFlush. During prepare phase, we have update lock on the region so 366 // no edits should be coming in via append. 367 synchronized (tieLock) { 368 flushing = this.flushingSequenceIds.remove(encodedRegionName); 369 if (flushing != null) { 370 Map<ImmutableByteArray, Long> unflushed = getOrCreateLowestSequenceIds(encodedRegionName); 371 for (Map.Entry<ImmutableByteArray, Long> e: flushing.entrySet()) { 372 // Set into unflushed the 'old' oldest sequenceid and if any value in flushed with this 373 // value, it will now be in tmpMap. 374 tmpMap.put(e.getKey(), unflushed.put(e.getKey(), e.getValue())); 375 } 376 } 377 } 378 379 // Here we are doing some 'test' to see if edits are going in out of order. What is it for? 380 // Carried over from old code. 381 if (flushing != null) { 382 for (Map.Entry<ImmutableByteArray, Long> e : flushing.entrySet()) { 383 Long currentId = tmpMap.get(e.getKey()); 384 if (currentId != null && currentId.longValue() < e.getValue().longValue()) { 385 String errorStr = Bytes.toString(encodedRegionName) + " family " 386 + e.getKey().toString() + " acquired edits out of order current memstore seq=" 387 + currentId + ", previous oldest unflushed id=" + e.getValue(); 388 LOG.error(errorStr); 389 Runtime.getRuntime().halt(1); 390 } 391 } 392 } 393 } 394 395 /** 396 * See if passed <code>sequenceids</code> are lower -- i.e. earlier -- than any outstanding 397 * sequenceids, sequenceids we are holding on to in this accounting instance. 398 * @param sequenceids Keyed by encoded region name. Cannot be null (doesn't make sense for it to 399 * be null). 400 * @return true if all sequenceids are lower, older than, the old sequenceids in this instance. 401 */ 402 boolean areAllLower(Map<byte[], Long> sequenceids) { 403 Map<byte[], Long> flushing = null; 404 Map<byte[], Long> unflushed = null; 405 synchronized (this.tieLock) { 406 // Get a flattened -- only the oldest sequenceid -- copy of current flushing and unflushed 407 // data structures to use in tests below. 408 flushing = flattenToLowestSequenceId(this.flushingSequenceIds); 409 unflushed = flattenToLowestSequenceId(this.lowestUnflushedSequenceIds); 410 } 411 for (Map.Entry<byte[], Long> e : sequenceids.entrySet()) { 412 long oldestFlushing = Long.MAX_VALUE; 413 long oldestUnflushed = Long.MAX_VALUE; 414 if (flushing != null && flushing.containsKey(e.getKey())) { 415 oldestFlushing = flushing.get(e.getKey()); 416 } 417 if (unflushed != null && unflushed.containsKey(e.getKey())) { 418 oldestUnflushed = unflushed.get(e.getKey()); 419 } 420 long min = Math.min(oldestFlushing, oldestUnflushed); 421 if (min <= e.getValue()) { 422 return false; 423 } 424 } 425 return true; 426 } 427 428 /** 429 * Iterates over the given Map and compares sequence ids with corresponding entries in 430 * {@link #lowestUnflushedSequenceIds}. If a region in 431 * {@link #lowestUnflushedSequenceIds} has a sequence id less than that passed in 432 * <code>sequenceids</code> then return it. 433 * @param sequenceids Sequenceids keyed by encoded region name. 434 * @return regions found in this instance with sequence ids less than those passed in. 435 */ 436 byte[][] findLower(Map<byte[], Long> sequenceids) { 437 List<byte[]> toFlush = null; 438 // Keeping the old behavior of iterating unflushedSeqNums under oldestSeqNumsLock. 439 synchronized (tieLock) { 440 for (Map.Entry<byte[], Long> e : sequenceids.entrySet()) { 441 Map<ImmutableByteArray, Long> m = this.lowestUnflushedSequenceIds.get(e.getKey()); 442 if (m == null) { 443 continue; 444 } 445 // The lowest sequence id outstanding for this region. 446 long lowest = getLowestSequenceId(m); 447 if (lowest != HConstants.NO_SEQNUM && lowest <= e.getValue()) { 448 if (toFlush == null) { 449 toFlush = new ArrayList<>(); 450 } 451 toFlush.add(e.getKey()); 452 } 453 } 454 } 455 return toFlush == null ? null : toFlush.toArray(new byte[0][]); 456 } 457}