001/* 002 * Licensed to the Apache Software Foundation (ASF) under one 003 * or more contributor license agreements. See the NOTICE file 004 * distributed with this work for additional information 005 * regarding copyright ownership. The ASF licenses this file 006 * to you under the Apache License, Version 2.0 (the 007 * "License"); you may not use this file except in compliance 008 * with the License. You may obtain a copy of the License at 009 * 010 * http://www.apache.org/licenses/LICENSE-2.0 011 * 012 * Unless required by applicable law or agreed to in writing, software 013 * distributed under the License is distributed on an "AS IS" BASIS, 014 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 015 * See the License for the specific language governing permissions and 016 * limitations under the License. 017 */ 018 019package org.apache.hadoop.hbase.util; 020 021import org.apache.yetus.audience.InterfaceAudience; 022 023/** 024 * EMA is similar to {@link WeightedMovingAverage} in weighted, but the weighting factor decrease 025 * exponentially. It brings benefits that it is more sensitive, and can see the trends easily. 026 */ 027@InterfaceAudience.Private 028public class ExponentialMovingAverage extends WindowMovingAverage { 029 private double alpha; 030 private double previousAverage; 031 private double currentAverage; 032 033 public ExponentialMovingAverage(String label) { 034 this(label, DEFAULT_SIZE); 035 } 036 037 public ExponentialMovingAverage(String label, double alpha) { 038 this(label, DEFAULT_SIZE, alpha); 039 } 040 041 public ExponentialMovingAverage(String label, int size) { 042 this(label, size, (double) 2 / (1 + size)); 043 } 044 045 public ExponentialMovingAverage(String label, int size, double alpha) { 046 super(label, size); 047 this.previousAverage = -1.0; 048 this.currentAverage = 0.0; 049 this.alpha = alpha; 050 } 051 052 @Override 053 public void updateMostRecentTime(long elapsed) { 054 if (!enoughStatistics()) { 055 previousAverage = super.getAverageTime(); 056 super.updateMostRecentTime(elapsed); 057 if (!enoughStatistics()) { 058 return; 059 } 060 } 061 // CurrentEMA = α * currentValue + (1 - α) * previousEMA => 062 // CurrentEMA = (currentValue - previousEMA) * α + previousEMA 063 // This will reduce multiplication. 064 currentAverage = (elapsed - previousAverage) * alpha + previousAverage; 065 previousAverage = currentAverage; 066 } 067 068 @Override 069 public double getAverageTime() { 070 if (!enoughStatistics()) { 071 return super.getAverageTime(); 072 } 073 return currentAverage; 074 } 075 076 double getPrevious() { 077 return previousAverage; 078 } 079}