001/*
002 * Licensed to the Apache Software Foundation (ASF) under one
003 * or more contributor license agreements.  See the NOTICE file
004 * distributed with this work for additional information
005 * regarding copyright ownership.  The ASF licenses this file
006 * to you under the Apache License, Version 2.0 (the
007 * "License"); you may not use this file except in compliance
008 * with the License.  You may obtain a copy of the License at
009 *
010 *     http://www.apache.org/licenses/LICENSE-2.0
011 *
012 * Unless required by applicable law or agreed to in writing, software
013 * distributed under the License is distributed on an "AS IS" BASIS,
014 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
015 * See the License for the specific language governing permissions and
016 * limitations under the License.
017 */
018package org.apache.hadoop.hbase.regionserver.wal;
019
020import static org.apache.hadoop.hbase.regionserver.wal.WALActionsListener.RollRequestReason.ERROR;
021import static org.apache.hadoop.hbase.regionserver.wal.WALActionsListener.RollRequestReason.LOW_REPLICATION;
022import static org.apache.hadoop.hbase.regionserver.wal.WALActionsListener.RollRequestReason.SIZE;
023import static org.apache.hadoop.hbase.regionserver.wal.WALActionsListener.RollRequestReason.SLOW_SYNC;
024
025import com.lmax.disruptor.BlockingWaitStrategy;
026import com.lmax.disruptor.EventHandler;
027import com.lmax.disruptor.ExceptionHandler;
028import com.lmax.disruptor.LifecycleAware;
029import com.lmax.disruptor.TimeoutException;
030import com.lmax.disruptor.dsl.Disruptor;
031import com.lmax.disruptor.dsl.ProducerType;
032import io.opentelemetry.api.trace.Span;
033import java.io.IOException;
034import java.io.OutputStream;
035import java.util.Arrays;
036import java.util.List;
037import java.util.concurrent.BlockingQueue;
038import java.util.concurrent.CountDownLatch;
039import java.util.concurrent.ExecutorService;
040import java.util.concurrent.Executors;
041import java.util.concurrent.LinkedBlockingQueue;
042import java.util.concurrent.TimeUnit;
043import java.util.concurrent.atomic.AtomicInteger;
044import org.apache.hadoop.conf.Configuration;
045import org.apache.hadoop.fs.FSDataOutputStream;
046import org.apache.hadoop.fs.FileSystem;
047import org.apache.hadoop.fs.Path;
048import org.apache.hadoop.hbase.Abortable;
049import org.apache.hadoop.hbase.HConstants;
050import org.apache.hadoop.hbase.client.RegionInfo;
051import org.apache.hadoop.hbase.util.Bytes;
052import org.apache.hadoop.hbase.util.ClassSize;
053import org.apache.hadoop.hbase.util.CommonFSUtils;
054import org.apache.hadoop.hbase.util.Threads;
055import org.apache.hadoop.hbase.wal.FSHLogProvider;
056import org.apache.hadoop.hbase.wal.WALEdit;
057import org.apache.hadoop.hbase.wal.WALKeyImpl;
058import org.apache.hadoop.hbase.wal.WALProvider.Writer;
059import org.apache.hadoop.hdfs.DFSOutputStream;
060import org.apache.hadoop.hdfs.client.HdfsDataOutputStream;
061import org.apache.hadoop.hdfs.protocol.DatanodeInfo;
062import org.apache.yetus.audience.InterfaceAudience;
063import org.slf4j.Logger;
064import org.slf4j.LoggerFactory;
065
066import org.apache.hbase.thirdparty.com.google.common.util.concurrent.ThreadFactoryBuilder;
067
068/**
069 * The original implementation of FSWAL.
070 */
071@InterfaceAudience.Private
072public class FSHLog extends AbstractFSWAL<Writer> {
073  // IMPLEMENTATION NOTES:
074  //
075  // At the core is a ring buffer. Our ring buffer is the LMAX Disruptor. It tries to
076  // minimize synchronizations and volatile writes when multiple contending threads as is the case
077  // here appending and syncing on a single WAL. The Disruptor is configured to handle multiple
078  // producers but it has one consumer only (the producers in HBase are IPC Handlers calling append
079  // and then sync). The single consumer/writer pulls the appends and syncs off the ring buffer.
080  // When a handler calls sync, it is given back a future. The producer 'blocks' on the future so
081  // it does not return until the sync completes. The future is passed over the ring buffer from
082  // the producer/handler to the consumer thread where it does its best to batch up the producer
083  // syncs so one WAL sync actually spans multiple producer sync invocations. How well the
084  // batching works depends on the write rate; i.e. we tend to batch more in times of
085  // high writes/syncs.
086  //
087  // Calls to append now also wait until the append has been done on the consumer side of the
088  // disruptor. We used to not wait but it makes the implementation easier to grok if we have
089  // the region edit/sequence id after the append returns.
090  //
091  // TODO: Handlers need to coordinate appending AND syncing. Can we have the threads contend
092  // once only? Probably hard given syncs take way longer than an append.
093  //
094  // The consumer threads pass the syncs off to multiple syncing threads in a round robin fashion
095  // to ensure we keep up back-to-back FS sync calls (FS sync calls are the long poll writing the
096  // WAL). The consumer thread passes the futures to the sync threads for it to complete
097  // the futures when done.
098  //
099  // The 'sequence' in the below is the sequence of the append/sync on the ringbuffer. It
100  // acts as a sort-of transaction id. It is always incrementing.
101  //
102  // The RingBufferEventHandler class hosts the ring buffer consuming code. The threads that
103  // do the actual FS sync are implementations of SyncRunner. SafePointZigZagLatch is a
104  // synchronization class used to halt the consumer at a safe point -- just after all outstanding
105  // syncs and appends have completed -- so the log roller can swap the WAL out under it.
106  //
107  // We use ring buffer sequence as txid of FSWALEntry and SyncFuture.
108  private static final Logger LOG = LoggerFactory.getLogger(FSHLog.class);
109
110  private static final String TOLERABLE_LOW_REPLICATION =
111    "hbase.regionserver.hlog.tolerable.lowreplication";
112  private static final String LOW_REPLICATION_ROLL_LIMIT =
113    "hbase.regionserver.hlog.lowreplication.rolllimit";
114  private static final int DEFAULT_LOW_REPLICATION_ROLL_LIMIT = 5;
115  private static final String ROLL_ERRORS_TOLERATED = "hbase.regionserver.logroll.errors.tolerated";
116  private static final int DEFAULT_ROLL_ERRORS_TOLERATED = 2;
117  private static final String SYNCER_COUNT = "hbase.regionserver.hlog.syncer.count";
118  private static final int DEFAULT_SYNCER_COUNT = 5;
119  private static final String MAX_BATCH_COUNT = "hbase.regionserver.wal.sync.batch.count";
120  private static final int DEFAULT_MAX_BATCH_COUNT = 200;
121
122  private static final String FSHLOG_WAIT_ON_SHUTDOWN_IN_SECONDS =
123    "hbase.wal.fshlog.wait.on.shutdown.seconds";
124  private static final int DEFAULT_FSHLOG_WAIT_ON_SHUTDOWN_IN_SECONDS = 5;
125
126  /**
127   * The nexus at which all incoming handlers meet. Does appends and sync with an ordering. Appends
128   * and syncs are each put on the ring which means handlers need to smash up against the ring twice
129   * (can we make it once only? ... maybe not since time to append is so different from time to sync
130   * and sometimes we don't want to sync or we want to async the sync). The ring is where we make
131   * sure of our ordering and it is also where we do batching up of handler sync calls.
132   */
133  private final Disruptor<RingBufferTruck> disruptor;
134
135  /**
136   * This fellow is run by the above appendExecutor service but it is all about batching up appends
137   * and syncs; it may shutdown without cleaning out the last few appends or syncs. To guard against
138   * this, keep a reference to this handler and do explicit close on way out to make sure all
139   * flushed out before we exit.
140   */
141  private final RingBufferEventHandler ringBufferEventHandler;
142
143  /**
144   * FSDataOutputStream associated with the current SequenceFile.writer
145   */
146  private FSDataOutputStream hdfs_out;
147
148  // All about log rolling if not enough replicas outstanding.
149
150  // Minimum tolerable replicas, if the actual value is lower than it, rollWriter will be triggered
151  private final int minTolerableReplication;
152
153  // If live datanode count is lower than the default replicas value,
154  // RollWriter will be triggered in each sync(So the RollWriter will be
155  // triggered one by one in a short time). Using it as a workaround to slow
156  // down the roll frequency triggered by checkLowReplication().
157  private final AtomicInteger consecutiveLogRolls = new AtomicInteger(0);
158
159  private final int lowReplicationRollLimit;
160
161  // If consecutiveLogRolls is larger than lowReplicationRollLimit,
162  // then disable the rolling in checkLowReplication().
163  // Enable it if the replications recover.
164  private volatile boolean lowReplicationRollEnabled = true;
165
166  /** Number of log close errors tolerated before we abort */
167  private final int closeErrorsTolerated;
168
169  private final AtomicInteger closeErrorCount = new AtomicInteger();
170
171  private final int waitOnShutdownInSeconds;
172  private final ExecutorService closeExecutor = Executors.newCachedThreadPool(
173    new ThreadFactoryBuilder().setDaemon(true).setNameFormat("Close-WAL-Writer-%d").build());
174
175  /**
176   * Exception handler to pass the disruptor ringbuffer. Same as native implementation only it logs
177   * using our logger instead of java native logger.
178   */
179  static class RingBufferExceptionHandler implements ExceptionHandler<RingBufferTruck> {
180
181    @Override
182    public void handleEventException(Throwable ex, long sequence, RingBufferTruck event) {
183      LOG.error("Sequence=" + sequence + ", event=" + event, ex);
184      throw new RuntimeException(ex);
185    }
186
187    @Override
188    public void handleOnStartException(Throwable ex) {
189      LOG.error(ex.toString(), ex);
190      throw new RuntimeException(ex);
191    }
192
193    @Override
194    public void handleOnShutdownException(Throwable ex) {
195      LOG.error(ex.toString(), ex);
196      throw new RuntimeException(ex);
197    }
198  }
199
200  /**
201   * Constructor.
202   * @param fs     filesystem handle
203   * @param root   path for stored and archived wals
204   * @param logDir dir where wals are stored
205   * @param conf   configuration to use
206   */
207  public FSHLog(final FileSystem fs, final Path root, final String logDir, final Configuration conf)
208    throws IOException {
209    this(fs, root, logDir, HConstants.HREGION_OLDLOGDIR_NAME, conf, null, true, null, null);
210  }
211
212  public FSHLog(final FileSystem fs, Abortable abortable, final Path root, final String logDir,
213    final Configuration conf) throws IOException {
214    this(fs, abortable, root, logDir, HConstants.HREGION_OLDLOGDIR_NAME, conf, null, true, null,
215      null);
216  }
217
218  public FSHLog(final FileSystem fs, final Path rootDir, final String logDir,
219    final String archiveDir, final Configuration conf, final List<WALActionsListener> listeners,
220    final boolean failIfWALExists, final String prefix, final String suffix) throws IOException {
221    this(fs, null, rootDir, logDir, archiveDir, conf, listeners, failIfWALExists, prefix, suffix);
222  }
223
224  /**
225   * Create an edit log at the given <code>dir</code> location. You should never have to load an
226   * existing log. If there is a log at startup, it should have already been processed and deleted
227   * by the time the WAL object is started up.
228   * @param fs              filesystem handle
229   * @param rootDir         path to where logs and oldlogs
230   * @param logDir          dir where wals are stored
231   * @param archiveDir      dir where wals are archived
232   * @param conf            configuration to use
233   * @param listeners       Listeners on WAL events. Listeners passed here will be registered before
234   *                        we do anything else; e.g. the Constructor {@link #rollWriter()}.
235   * @param failIfWALExists If true IOException will be thrown if files related to this wal already
236   *                        exist.
237   * @param prefix          should always be hostname and port in distributed env and it will be URL
238   *                        encoded before being used. If prefix is null, "wal" will be used
239   * @param suffix          will be url encoded. null is treated as empty. non-empty must start with
240   *                        {@link org.apache.hadoop.hbase.wal.AbstractFSWALProvider#WAL_FILE_NAME_DELIMITER}
241   */
242  public FSHLog(final FileSystem fs, final Abortable abortable, final Path rootDir,
243    final String logDir, final String archiveDir, final Configuration conf,
244    final List<WALActionsListener> listeners, final boolean failIfWALExists, final String prefix,
245    final String suffix) throws IOException {
246    super(fs, abortable, rootDir, logDir, archiveDir, conf, listeners, failIfWALExists, prefix,
247      suffix);
248    this.minTolerableReplication =
249      conf.getInt(TOLERABLE_LOW_REPLICATION, CommonFSUtils.getDefaultReplication(fs, this.walDir));
250    this.lowReplicationRollLimit =
251      conf.getInt(LOW_REPLICATION_ROLL_LIMIT, DEFAULT_LOW_REPLICATION_ROLL_LIMIT);
252    this.closeErrorsTolerated = conf.getInt(ROLL_ERRORS_TOLERATED, DEFAULT_ROLL_ERRORS_TOLERATED);
253    this.waitOnShutdownInSeconds =
254      conf.getInt(FSHLOG_WAIT_ON_SHUTDOWN_IN_SECONDS, DEFAULT_FSHLOG_WAIT_ON_SHUTDOWN_IN_SECONDS);
255    // This is the 'writer' -- a single threaded executor. This single thread 'consumes' what is
256    // put on the ring buffer.
257    String hostingThreadName = Thread.currentThread().getName();
258    // Using BlockingWaitStrategy. Stuff that is going on here takes so long it makes no sense
259    // spinning as other strategies do.
260    this.disruptor = new Disruptor<>(RingBufferTruck::new, getPreallocatedEventCount(),
261      new ThreadFactoryBuilder().setNameFormat(hostingThreadName + ".append-pool-%d")
262        .setDaemon(true).setUncaughtExceptionHandler(Threads.LOGGING_EXCEPTION_HANDLER).build(),
263      ProducerType.MULTI, new BlockingWaitStrategy());
264    // Advance the ring buffer sequence so that it starts from 1 instead of 0,
265    // because SyncFuture.NOT_DONE = 0.
266    this.disruptor.getRingBuffer().next();
267    int syncerCount = conf.getInt(SYNCER_COUNT, DEFAULT_SYNCER_COUNT);
268    int maxBatchCount = conf.getInt(MAX_BATCH_COUNT,
269      conf.getInt(HConstants.REGION_SERVER_HANDLER_COUNT, DEFAULT_MAX_BATCH_COUNT));
270    this.ringBufferEventHandler = new RingBufferEventHandler(syncerCount, maxBatchCount);
271    this.disruptor.setDefaultExceptionHandler(new RingBufferExceptionHandler());
272    this.disruptor.handleEventsWith(new RingBufferEventHandler[] { this.ringBufferEventHandler });
273    // Starting up threads in constructor is a no no; Interface should have an init call.
274    this.disruptor.start();
275  }
276
277  /**
278   * Currently, we need to expose the writer's OutputStream to tests so that they can manipulate the
279   * default behavior (such as setting the maxRecoveryErrorCount value). This is done using
280   * reflection on the underlying HDFS OutputStream. NOTE: This could be removed once Hadoop1
281   * support is removed.
282   * @return null if underlying stream is not ready.
283   */
284  OutputStream getOutputStream() {
285    FSDataOutputStream fsdos = this.hdfs_out;
286    return fsdos != null ? fsdos.getWrappedStream() : null;
287  }
288
289  /**
290   * Run a sync after opening to set up the pipeline.
291   */
292  private void preemptiveSync(final ProtobufLogWriter nextWriter) {
293    long startTimeNanos = System.nanoTime();
294    try {
295      nextWriter.sync(useHsync);
296      postSync(System.nanoTime() - startTimeNanos, 0);
297    } catch (IOException e) {
298      // optimization failed, no need to abort here.
299      LOG.warn("pre-sync failed but an optimization so keep going", e);
300    }
301  }
302
303  /**
304   * This method allows subclasses to inject different writers without having to extend other
305   * methods like rollWriter().
306   * @return Writer instance
307   */
308  @Override
309  protected Writer createWriterInstance(final Path path) throws IOException {
310    Writer writer = FSHLogProvider.createWriter(conf, fs, path, false, this.blocksize);
311    if (writer instanceof ProtobufLogWriter) {
312      preemptiveSync((ProtobufLogWriter) writer);
313    }
314    return writer;
315  }
316
317  /**
318   * Used to manufacture race condition reliably. For testing only.
319   * @see #beforeWaitOnSafePoint()
320   */
321  protected void afterCreatingZigZagLatch() {
322  }
323
324  /**
325   * @see #afterCreatingZigZagLatch()
326   */
327  protected void beforeWaitOnSafePoint() {
328  };
329
330  @Override
331  protected void doAppend(Writer writer, FSWALEntry entry) throws IOException {
332    writer.append(entry);
333  }
334
335  @Override
336  protected void doReplaceWriter(Path oldPath, Path newPath, Writer nextWriter) throws IOException {
337    // Ask the ring buffer writer to pause at a safe point. Once we do this, the writer
338    // thread will eventually pause. An error hereafter needs to release the writer thread
339    // regardless -- hence the finally block below. Note, this method is called from the FSHLog
340    // constructor BEFORE the ring buffer is set running so it is null on first time through
341    // here; allow for that.
342    SyncFuture syncFuture = null;
343    SafePointZigZagLatch zigzagLatch = null;
344    long sequence = -1L;
345    if (this.writer != null && this.ringBufferEventHandler != null) {
346      // Get sequence first to avoid dead lock when ring buffer is full
347      // Considering below sequence
348      // 1. replaceWriter is called and zigzagLatch is initialized
349      // 2. ringBufferEventHandler#onEvent is called and arrives at #attainSafePoint(long) then wait
350      // on safePointReleasedLatch
351      // 3. Since ring buffer is full, if we get sequence when publish sync, the replaceWriter
352      // thread will wait for the ring buffer to be consumed, but the only consumer is waiting
353      // replaceWriter thread to release safePointReleasedLatch, which causes a deadlock
354      sequence = getSequenceOnRingBuffer();
355      zigzagLatch = this.ringBufferEventHandler.attainSafePoint();
356    }
357    afterCreatingZigZagLatch();
358    try {
359      // Wait on the safe point to be achieved. Send in a sync in case nothing has hit the
360      // ring buffer between the above notification of writer that we want it to go to
361      // 'safe point' and then here where we are waiting on it to attain safe point. Use
362      // 'sendSync' instead of 'sync' because we do not want this thread to block waiting on it
363      // to come back. Cleanup this syncFuture down below after we are ready to run again.
364      try {
365        if (zigzagLatch != null) {
366          // use assert to make sure no change breaks the logic that
367          // sequence and zigzagLatch will be set together
368          assert sequence > 0L : "Failed to get sequence from ring buffer";
369          syncFuture = zigzagLatch.waitSafePoint(publishSyncOnRingBuffer(sequence, false));
370        }
371      } catch (FailedSyncBeforeLogCloseException e) {
372        // If unflushed/unsynced entries on close, it is reason to abort.
373        if (isUnflushedEntries()) {
374          throw e;
375        }
376        LOG.warn(
377          "Failed sync-before-close but no outstanding appends; closing WAL" + e.getMessage());
378      }
379      long oldFileLen = 0L;
380      // It is at the safe point. Swap out writer from under the blocked writer thread.
381      if (this.writer != null) {
382        oldFileLen = this.writer.getLength();
383        // In case of having unflushed entries or we already reached the
384        // closeErrorsTolerated count, call the closeWriter inline rather than in async
385        // way so that in case of an IOE we will throw it back and abort RS.
386        inflightWALClosures.put(oldPath.getName(), writer);
387        if (isUnflushedEntries() || closeErrorCount.get() >= this.closeErrorsTolerated) {
388          closeWriter(this.writer, oldPath, true);
389        } else {
390          Writer localWriter = this.writer;
391          closeExecutor.execute(() -> {
392            try {
393              closeWriter(localWriter, oldPath, false);
394            } catch (IOException e) {
395              // We will never reach here.
396            }
397          });
398        }
399      }
400      logRollAndSetupWalProps(oldPath, newPath, oldFileLen);
401      this.writer = nextWriter;
402      if (nextWriter != null && nextWriter instanceof ProtobufLogWriter) {
403        this.hdfs_out = ((ProtobufLogWriter) nextWriter).getStream();
404      } else {
405        this.hdfs_out = null;
406      }
407    } catch (InterruptedException ie) {
408      // Perpetuate the interrupt
409      Thread.currentThread().interrupt();
410    } catch (IOException e) {
411      long count = getUnflushedEntriesCount();
412      LOG.error("Failed close of WAL writer " + oldPath + ", unflushedEntries=" + count, e);
413      throw new FailedLogCloseException(oldPath + ", unflushedEntries=" + count, e);
414    } finally {
415      // Let the writer thread go regardless, whether error or not.
416      if (zigzagLatch != null) {
417        // Reset rollRequested status
418        rollRequested.set(false);
419        zigzagLatch.releaseSafePoint();
420        // syncFuture will be null if we failed our wait on safe point above. Otherwise, if
421        // latch was obtained successfully, the sync we threw in either trigger the latch or it
422        // got stamped with an exception because the WAL was damaged and we could not sync. Now
423        // the write pipeline has been opened up again by releasing the safe point, process the
424        // syncFuture we got above. This is probably a noop but it may be stale exception from
425        // when old WAL was in place. Catch it if so.
426        if (syncFuture != null) {
427          try {
428            blockOnSync(syncFuture);
429          } catch (IOException ioe) {
430            if (LOG.isTraceEnabled()) {
431              LOG.trace("Stale sync exception", ioe);
432            }
433          }
434        }
435      }
436    }
437  }
438
439  private void closeWriter(Writer writer, Path path, boolean syncCloseCall) throws IOException {
440    Span span = Span.current();
441    try {
442      span.addEvent("closing writer");
443      writer.close();
444      span.addEvent("writer closed");
445    } catch (IOException ioe) {
446      int errors = closeErrorCount.incrementAndGet();
447      boolean hasUnflushedEntries = isUnflushedEntries();
448      if (syncCloseCall && (hasUnflushedEntries || (errors > this.closeErrorsTolerated))) {
449        LOG.error("Close of WAL " + path + " failed. Cause=\"" + ioe.getMessage() + "\", errors="
450          + errors + ", hasUnflushedEntries=" + hasUnflushedEntries);
451        throw ioe;
452      }
453      LOG.warn("Riding over failed WAL close of " + path
454        + "; THIS FILE WAS NOT CLOSED BUT ALL EDITS SYNCED SO SHOULD BE OK", ioe);
455    } finally {
456      inflightWALClosures.remove(path.getName());
457    }
458  }
459
460  @Override
461  protected void doShutdown() throws IOException {
462    // Shutdown the disruptor. Will stop after all entries have been processed. Make sure we
463    // have stopped incoming appends before calling this else it will not shutdown. We are
464    // conservative below waiting a long time and if not elapsed, then halting.
465    if (this.disruptor != null) {
466      long timeoutms = conf.getLong("hbase.wal.disruptor.shutdown.timeout.ms", 60000);
467      try {
468        this.disruptor.shutdown(timeoutms, TimeUnit.MILLISECONDS);
469      } catch (TimeoutException e) {
470        LOG.warn("Timed out bringing down disruptor after " + timeoutms + "ms; forcing halt "
471          + "(It is a problem if this is NOT an ABORT! -- DATALOSS!!!!)");
472        this.disruptor.halt();
473        this.disruptor.shutdown();
474      }
475    }
476
477    if (LOG.isDebugEnabled()) {
478      LOG.debug("Closing WAL writer in " + CommonFSUtils.getPath(walDir));
479    }
480    if (this.writer != null) {
481      this.writer.close();
482      this.writer = null;
483    }
484    closeExecutor.shutdown();
485    try {
486      if (!closeExecutor.awaitTermination(waitOnShutdownInSeconds, TimeUnit.SECONDS)) {
487        LOG.error(
488          "We have waited {} seconds but the close of writer(s) doesn't complete."
489            + "Please check the status of underlying filesystem"
490            + " or increase the wait time by the config \"{}\"",
491          this.waitOnShutdownInSeconds, FSHLOG_WAIT_ON_SHUTDOWN_IN_SECONDS);
492      }
493    } catch (InterruptedException e) {
494      LOG.error("The wait for termination of FSHLog writer(s) is interrupted");
495      Thread.currentThread().interrupt();
496    }
497  }
498
499  @Override
500  protected long append(final RegionInfo hri, final WALKeyImpl key, final WALEdit edits,
501    final boolean inMemstore) throws IOException {
502    return stampSequenceIdAndPublishToRingBuffer(hri, key, edits, inMemstore,
503      disruptor.getRingBuffer());
504  }
505
506  /**
507   * Thread to runs the hdfs sync call. This call takes a while to complete. This is the longest
508   * pole adding edits to the WAL and this must complete to be sure all edits persisted. We run
509   * multiple threads sync'ng rather than one that just syncs in series so we have better latencies;
510   * otherwise, an edit that arrived just after a sync started, might have to wait almost the length
511   * of two sync invocations before it is marked done.
512   * <p>
513   * When the sync completes, it marks all the passed in futures done. On the other end of the sync
514   * future is a blocked thread, usually a regionserver Handler. There may be more than one future
515   * passed in the case where a few threads arrive at about the same time and all invoke 'sync'. In
516   * this case we'll batch up the invocations and run one filesystem sync only for a batch of
517   * Handler sync invocations. Do not confuse these Handler SyncFutures with the futures an
518   * ExecutorService returns when you call submit. We have no use for these in this model. These
519   * SyncFutures are 'artificial', something to hold the Handler until the filesystem sync
520   * completes.
521   */
522  private class SyncRunner extends Thread {
523    private volatile long sequence;
524    // Keep around last exception thrown. Clear on successful sync.
525    private final BlockingQueue<SyncFuture> syncFutures;
526    private volatile SyncFuture takeSyncFuture = null;
527
528    SyncRunner(final String name, final int maxHandlersCount) {
529      super(name);
530      // LinkedBlockingQueue because of
531      // http://www.javacodegeeks.com/2010/09/java-best-practices-queue-battle-and.html
532      // Could use other blockingqueues here or concurrent queues.
533      //
534      // We could let the capacity be 'open' but bound it so we get alerted in pathological case
535      // where we cannot sync and we have a bunch of threads all backed up waiting on their syncs
536      // to come in. LinkedBlockingQueue actually shrinks when you remove elements so Q should
537      // stay neat and tidy in usual case. Let the max size be three times the maximum handlers.
538      // The passed in maxHandlerCount is the user-level handlers which is what we put up most of
539      // but HBase has other handlers running too -- opening region handlers which want to write
540      // the meta table when succesful (i.e. sync), closing handlers -- etc. These are usually
541      // much fewer in number than the user-space handlers so Q-size should be user handlers plus
542      // some space for these other handlers. Lets multiply by 3 for good-measure.
543      this.syncFutures = new LinkedBlockingQueue<>(maxHandlersCount * 3);
544    }
545
546    void offer(final long sequence, final SyncFuture[] syncFutures, final int syncFutureCount) {
547      // Set sequence first because the add to the queue will wake the thread if sleeping.
548      this.sequence = sequence;
549      for (int i = 0; i < syncFutureCount; ++i) {
550        this.syncFutures.add(syncFutures[i]);
551      }
552    }
553
554    /**
555     * Release the passed <code>syncFuture</code>
556     * @return Returns 1.
557     */
558    private int releaseSyncFuture(final SyncFuture syncFuture, final long currentSequence,
559      final Throwable t) {
560      if (!syncFuture.done(currentSequence, t)) {
561        throw new IllegalStateException();
562      }
563
564      // This function releases one sync future only.
565      return 1;
566    }
567
568    /**
569     * Release all SyncFutures whose sequence is <= <code>currentSequence</code>.
570     * @param t May be non-null if we are processing SyncFutures because an exception was thrown.
571     * @return Count of SyncFutures we let go.
572     */
573    private int releaseSyncFutures(final long currentSequence, final Throwable t) {
574      int syncCount = 0;
575      for (SyncFuture syncFuture; (syncFuture = this.syncFutures.peek()) != null;) {
576        if (syncFuture.getTxid() > currentSequence) {
577          break;
578        }
579        releaseSyncFuture(syncFuture, currentSequence, t);
580        if (!this.syncFutures.remove(syncFuture)) {
581          throw new IllegalStateException(syncFuture.toString());
582        }
583        syncCount++;
584      }
585      return syncCount;
586    }
587
588    /**
589     * @param sequence The sequence we ran the filesystem sync against.
590     * @return Current highest synced sequence.
591     */
592    private long updateHighestSyncedSequence(long sequence) {
593      long currentHighestSyncedSequence;
594      // Set the highestSyncedSequence IFF our current sequence id is the 'highest'.
595      do {
596        currentHighestSyncedSequence = highestSyncedTxid.get();
597        if (currentHighestSyncedSequence >= sequence) {
598          // Set the sync number to current highwater mark; might be able to let go more
599          // queued sync futures
600          sequence = currentHighestSyncedSequence;
601          break;
602        }
603      } while (!highestSyncedTxid.compareAndSet(currentHighestSyncedSequence, sequence));
604      return sequence;
605    }
606
607    boolean areSyncFuturesReleased() {
608      // check whether there is no sync futures offered, and no in-flight sync futures that is being
609      // processed.
610      return syncFutures.size() <= 0 && takeSyncFuture == null;
611    }
612
613    @Override
614    public void run() {
615      long currentSequence;
616      while (!isInterrupted()) {
617        int syncCount = 0;
618
619        try {
620          // Make a local copy of takeSyncFuture after we get it. We've been running into NPEs
621          // 2020-03-22 16:54:32,180 WARN [sync.1] wal.FSHLog$SyncRunner(589): UNEXPECTED
622          // java.lang.NullPointerException
623          // at org.apache.hadoop.hbase.regionserver.wal.FSHLog$SyncRunner.run(FSHLog.java:582)
624          // at java.lang.Thread.run(Thread.java:748)
625          SyncFuture sf;
626          while (true) {
627            takeSyncFuture = null;
628            // We have to process what we 'take' from the queue
629            takeSyncFuture = this.syncFutures.take();
630            // Make local copy.
631            sf = takeSyncFuture;
632            currentSequence = this.sequence;
633            long syncFutureSequence = sf.getTxid();
634            if (syncFutureSequence > currentSequence) {
635              throw new IllegalStateException("currentSequence=" + currentSequence
636                + ", syncFutureSequence=" + syncFutureSequence);
637            }
638            // See if we can process any syncfutures BEFORE we go sync.
639            long currentHighestSyncedSequence = highestSyncedTxid.get();
640            if (currentSequence < currentHighestSyncedSequence) {
641              syncCount += releaseSyncFuture(sf, currentHighestSyncedSequence, null);
642              // Done with the 'take'. Go around again and do a new 'take'.
643              continue;
644            }
645            break;
646          }
647          // I got something. Lets run. Save off current sequence number in case it changes
648          // while we run.
649          long start = System.nanoTime();
650          Throwable lastException = null;
651          try {
652            long unSyncedFlushSeq = highestUnsyncedTxid;
653            writer.sync(sf.isForceSync());
654            if (unSyncedFlushSeq > currentSequence) {
655              currentSequence = unSyncedFlushSeq;
656            }
657            currentSequence = updateHighestSyncedSequence(currentSequence);
658          } catch (IOException e) {
659            LOG.error("Error syncing, request close of WAL", e);
660            lastException = e;
661          } catch (Exception e) {
662            LOG.warn("UNEXPECTED", e);
663            lastException = e;
664          } finally {
665            // First release what we 'took' from the queue.
666            syncCount += releaseSyncFuture(takeSyncFuture, currentSequence, lastException);
667            // Can we release other syncs?
668            syncCount += releaseSyncFutures(currentSequence, lastException);
669            if (lastException != null) {
670              requestLogRoll(ERROR);
671            } else {
672              checkLogRoll();
673            }
674          }
675          postSync(System.nanoTime() - start, syncCount);
676        } catch (InterruptedException e) {
677          // Presume legit interrupt.
678          Thread.currentThread().interrupt();
679        } catch (Throwable t) {
680          LOG.warn("UNEXPECTED, continuing", t);
681        }
682      }
683    }
684  }
685
686  /**
687   * Schedule a log roll if needed.
688   */
689  private void checkLogRoll() {
690    // If we have already requested a roll, do nothing
691    if (isLogRollRequested()) {
692      return;
693    }
694    // Will return immediately if we are in the middle of a WAL log roll currently.
695    if (!rollWriterLock.tryLock()) {
696      return;
697    }
698    try {
699      if (doCheckLogLowReplication()) {
700        LOG.warn("Requesting log roll because of low replication, current pipeline: "
701          + Arrays.toString(getPipeline()));
702        requestLogRoll(LOW_REPLICATION);
703      } else if (writer != null && writer.getLength() > logrollsize) {
704        if (LOG.isDebugEnabled()) {
705          LOG.debug("Requesting log roll because of file size threshold; length="
706            + writer.getLength() + ", logrollsize=" + logrollsize);
707        }
708        requestLogRoll(SIZE);
709      } else if (doCheckSlowSync()) {
710        // We log this already in checkSlowSync
711        requestLogRoll(SLOW_SYNC);
712      }
713    } finally {
714      rollWriterLock.unlock();
715    }
716  }
717
718  /** Returns true if number of replicas for the WAL is lower than threshold */
719  @Override
720  protected boolean doCheckLogLowReplication() {
721    boolean logRollNeeded = false;
722    // if the number of replicas in HDFS has fallen below the configured
723    // value, then roll logs.
724    try {
725      int numCurrentReplicas = getLogReplication();
726      if (numCurrentReplicas != 0 && numCurrentReplicas < this.minTolerableReplication) {
727        if (this.lowReplicationRollEnabled) {
728          if (this.consecutiveLogRolls.get() < this.lowReplicationRollLimit) {
729            LOG.warn("HDFS pipeline error detected. " + "Found " + numCurrentReplicas
730              + " replicas but expecting no less than " + this.minTolerableReplication
731              + " replicas. " + " Requesting close of WAL. current pipeline: "
732              + Arrays.toString(getPipeline()));
733            logRollNeeded = true;
734            // If rollWriter is requested, increase consecutiveLogRolls. Once it
735            // is larger than lowReplicationRollLimit, disable the
736            // LowReplication-Roller
737            this.consecutiveLogRolls.getAndIncrement();
738          } else {
739            LOG.warn("Too many consecutive RollWriter requests, it's a sign of "
740              + "the total number of live datanodes is lower than the tolerable replicas.");
741            this.consecutiveLogRolls.set(0);
742            this.lowReplicationRollEnabled = false;
743          }
744        }
745      } else if (numCurrentReplicas >= this.minTolerableReplication) {
746        if (!this.lowReplicationRollEnabled) {
747          // The new writer's log replicas is always the default value.
748          // So we should not enable LowReplication-Roller. If numEntries
749          // is lower than or equals 1, we consider it as a new writer.
750          if (this.numEntries.get() <= 1) {
751            return logRollNeeded;
752          }
753          // Once the live datanode number and the replicas return to normal,
754          // enable the LowReplication-Roller.
755          this.lowReplicationRollEnabled = true;
756          LOG.info("LowReplication-Roller was enabled.");
757        }
758      }
759    } catch (Exception e) {
760      LOG.warn("DFSOutputStream.getNumCurrentReplicas failed because of " + e + ", continuing...");
761    }
762    return logRollNeeded;
763  }
764
765  protected long getSequenceOnRingBuffer() {
766    return this.disruptor.getRingBuffer().next();
767  }
768
769  private SyncFuture publishSyncOnRingBuffer(boolean forceSync) {
770    long sequence = getSequenceOnRingBuffer();
771    return publishSyncOnRingBuffer(sequence, forceSync);
772  }
773
774  protected SyncFuture publishSyncOnRingBuffer(long sequence, boolean forceSync) {
775    // here we use ring buffer sequence as transaction id
776    SyncFuture syncFuture = getSyncFuture(sequence, forceSync);
777    try {
778      RingBufferTruck truck = this.disruptor.getRingBuffer().get(sequence);
779      truck.load(syncFuture);
780    } finally {
781      this.disruptor.getRingBuffer().publish(sequence);
782    }
783    return syncFuture;
784  }
785
786  // Sync all known transactions
787  private void publishSyncThenBlockOnCompletion(boolean forceSync) throws IOException {
788    SyncFuture syncFuture = publishSyncOnRingBuffer(forceSync);
789    blockOnSync(syncFuture);
790  }
791
792  /**
793   * {@inheritDoc}
794   * <p>
795   * If the pipeline isn't started yet or is empty, you will get the default replication factor.
796   * Therefore, if this function returns 0, it means you are not properly running with the HDFS-826
797   * patch.
798   */
799  @Override
800  int getLogReplication() {
801    try {
802      // in standalone mode, it will return 0
803      if (this.hdfs_out instanceof HdfsDataOutputStream) {
804        return ((HdfsDataOutputStream) this.hdfs_out).getCurrentBlockReplication();
805      }
806    } catch (IOException e) {
807      LOG.info("", e);
808    }
809    return 0;
810  }
811
812  @Override
813  protected void doSync(boolean forceSync) throws IOException {
814    publishSyncThenBlockOnCompletion(forceSync);
815  }
816
817  @Override
818  protected void doSync(long txid, boolean forceSync) throws IOException {
819    if (this.highestSyncedTxid.get() >= txid) {
820      // Already sync'd.
821      return;
822    }
823    publishSyncThenBlockOnCompletion(forceSync);
824  }
825
826  boolean isLowReplicationRollEnabled() {
827    return lowReplicationRollEnabled;
828  }
829
830  public static final long FIXED_OVERHEAD =
831    ClassSize.align(ClassSize.OBJECT + (5 * ClassSize.REFERENCE) + (2 * ClassSize.ATOMIC_INTEGER)
832      + (3 * Bytes.SIZEOF_INT) + (4 * Bytes.SIZEOF_LONG));
833
834  /**
835   * This class is used coordinating two threads holding one thread at a 'safe point' while the
836   * orchestrating thread does some work that requires the first thread paused: e.g. holding the WAL
837   * writer while its WAL is swapped out from under it by another thread.
838   * <p>
839   * Thread A signals Thread B to hold when it gets to a 'safe point'. Thread A wait until Thread B
840   * gets there. When the 'safe point' has been attained, Thread B signals Thread A. Thread B then
841   * holds at the 'safe point'. Thread A on notification that Thread B is paused, goes ahead and
842   * does the work it needs to do while Thread B is holding. When Thread A is done, it flags B and
843   * then Thread A and Thread B continue along on their merry way. Pause and signalling 'zigzags'
844   * between the two participating threads. We use two latches -- one the inverse of the other --
845   * pausing and signaling when states are achieved.
846   * <p>
847   * To start up the drama, Thread A creates an instance of this class each time it would do this
848   * zigzag dance and passes it to Thread B (these classes use Latches so it is one shot only).
849   * Thread B notices the new instance (via reading a volatile reference or how ever) and it starts
850   * to work toward the 'safe point'. Thread A calls {@link #waitSafePoint(SyncFuture)} when it
851   * cannot proceed until the Thread B 'safe point' is attained. Thread A will be held inside in
852   * {@link #waitSafePoint(SyncFuture)} until Thread B reaches the 'safe point'. Once there, Thread
853   * B frees Thread A by calling {@link #safePointAttained()}. Thread A now knows Thread B is at the
854   * 'safe point' and that it is holding there (When Thread B calls {@link #safePointAttained()} it
855   * blocks here until Thread A calls {@link #releaseSafePoint()}). Thread A proceeds to do what it
856   * needs to do while Thread B is paused. When finished, it lets Thread B lose by calling
857   * {@link #releaseSafePoint()} and away go both Threads again.
858   */
859  static class SafePointZigZagLatch {
860    /**
861     * Count down this latch when safe point attained.
862     */
863    private volatile CountDownLatch safePointAttainedLatch = new CountDownLatch(1);
864    /**
865     * Latch to wait on. Will be released when we can proceed.
866     */
867    private volatile CountDownLatch safePointReleasedLatch = new CountDownLatch(1);
868
869    private void checkIfSyncFailed(SyncFuture syncFuture) throws FailedSyncBeforeLogCloseException {
870      Throwable t = syncFuture.getThrowable();
871      if (t != null) {
872        throw new FailedSyncBeforeLogCloseException(t);
873      }
874    }
875
876    /**
877     * For Thread A to call when it is ready to wait on the 'safe point' to be attained. Thread A
878     * will be held in here until Thread B calls {@link #safePointAttained()}
879     * @param syncFuture We need this as barometer on outstanding syncs. If it comes home with an
880     *                   exception, then something is up w/ our syncing.
881     * @return The passed <code>syncFuture</code>
882     */
883    SyncFuture waitSafePoint(SyncFuture syncFuture)
884      throws InterruptedException, FailedSyncBeforeLogCloseException {
885      while (!this.safePointAttainedLatch.await(1, TimeUnit.MILLISECONDS)) {
886        checkIfSyncFailed(syncFuture);
887      }
888      checkIfSyncFailed(syncFuture);
889      return syncFuture;
890    }
891
892    /** Returns if the safepoint has been attained. */
893    @InterfaceAudience.Private
894    boolean isSafePointAttained() {
895      return this.safePointAttainedLatch.getCount() == 0;
896    }
897
898    /**
899     * Called by Thread B when it attains the 'safe point'. In this method, Thread B signals Thread
900     * A it can proceed. Thread B will be held in here until {@link #releaseSafePoint()} is called
901     * by Thread A.
902     */
903    void safePointAttained() throws InterruptedException {
904      this.safePointAttainedLatch.countDown();
905      this.safePointReleasedLatch.await();
906    }
907
908    /**
909     * Called by Thread A when it is done with the work it needs to do while Thread B is halted.
910     * This will release the Thread B held in a call to {@link #safePointAttained()}
911     */
912    void releaseSafePoint() {
913      this.safePointReleasedLatch.countDown();
914    }
915
916    /** Returns True is this is a 'cocked', fresh instance, and not one that has already fired. */
917    boolean isCocked() {
918      return this.safePointAttainedLatch.getCount() > 0
919        && this.safePointReleasedLatch.getCount() > 0;
920    }
921  }
922
923  /**
924   * Handler that is run by the disruptor ringbuffer consumer. Consumer is a SINGLE
925   * 'writer/appender' thread. Appends edits and starts up sync runs. Tries its best to batch up
926   * syncs. There is no discernible benefit batching appends so we just append as they come in
927   * because it simplifies the below implementation. See metrics for batching effectiveness (In
928   * measurement, at 100 concurrent handlers writing 1k, we are batching > 10 appends and 10 handler
929   * sync invocations for every actual dfsclient sync call; at 10 concurrent handlers, YMMV).
930   * <p>
931   * Herein, we have an array into which we store the sync futures as they come in. When we have a
932   * 'batch', we'll then pass what we have collected to a SyncRunner thread to do the filesystem
933   * sync. When it completes, it will then call {@link SyncFuture#done(long, Throwable)} on each of
934   * SyncFutures in the batch to release blocked Handler threads.
935   * <p>
936   * I've tried various effects to try and make latencies low while keeping throughput high. I've
937   * tried keeping a single Queue of SyncFutures in this class appending to its tail as the syncs
938   * coming and having sync runner threads poll off the head to 'finish' completed SyncFutures. I've
939   * tried linkedlist, and various from concurrent utils whether LinkedBlockingQueue or
940   * ArrayBlockingQueue, etc. The more points of synchronization, the more 'work' (according to
941   * 'perf stats') that has to be done; small increases in stall percentages seem to have a big
942   * impact on throughput/latencies. The below model where we have an array into which we stash the
943   * syncs and then hand them off to the sync thread seemed like a decent compromise. See HBASE-8755
944   * for more detail.
945   */
946  class RingBufferEventHandler implements EventHandler<RingBufferTruck>, LifecycleAware {
947    private final SyncRunner[] syncRunners;
948    private final SyncFuture[] syncFutures;
949    // Had 'interesting' issues when this was non-volatile. On occasion, we'd not pass all
950    // syncFutures to the next sync'ing thread.
951    private AtomicInteger syncFuturesCount = new AtomicInteger();
952    private volatile SafePointZigZagLatch zigzagLatch;
953    /**
954     * Set if we get an exception appending or syncing so that all subsequence appends and syncs on
955     * this WAL fail until WAL is replaced.
956     */
957    private Exception exception = null;
958    /**
959     * Object to block on while waiting on safe point.
960     */
961    private final Object safePointWaiter = new Object();
962    private volatile boolean shutdown = false;
963
964    /**
965     * Which syncrunner to use next.
966     */
967    private int syncRunnerIndex;
968
969    RingBufferEventHandler(final int syncRunnerCount, final int maxBatchCount) {
970      this.syncFutures = new SyncFuture[maxBatchCount];
971      this.syncRunners = new SyncRunner[syncRunnerCount];
972      for (int i = 0; i < syncRunnerCount; i++) {
973        this.syncRunners[i] = new SyncRunner("sync." + i, maxBatchCount);
974      }
975    }
976
977    private void cleanupOutstandingSyncsOnException(final long sequence, final Exception e) {
978      // There could be handler-count syncFutures outstanding.
979      for (int i = 0; i < this.syncFuturesCount.get(); i++) {
980        this.syncFutures[i].done(sequence, e);
981      }
982      offerDoneSyncsBackToCache();
983    }
984
985    /**
986     * Offers the finished syncs back to the cache for reuse.
987     */
988    private void offerDoneSyncsBackToCache() {
989      for (int i = 0; i < this.syncFuturesCount.get(); i++) {
990        syncFutureCache.offer(syncFutures[i]);
991      }
992      this.syncFuturesCount.set(0);
993    }
994
995    /** Returns True if outstanding sync futures still */
996    private boolean isOutstandingSyncs() {
997      // Look at SyncFutures in the EventHandler
998      for (int i = 0; i < this.syncFuturesCount.get(); i++) {
999        if (!this.syncFutures[i].isDone()) {
1000          return true;
1001        }
1002      }
1003
1004      return false;
1005    }
1006
1007    private boolean isOutstandingSyncsFromRunners() {
1008      // Look at SyncFutures in the SyncRunners
1009      for (SyncRunner syncRunner : syncRunners) {
1010        if (syncRunner.isAlive() && !syncRunner.areSyncFuturesReleased()) {
1011          return true;
1012        }
1013      }
1014      return false;
1015    }
1016
1017    @Override
1018    // We can set endOfBatch in the below method if at end of our this.syncFutures array
1019    public void onEvent(final RingBufferTruck truck, final long sequence, boolean endOfBatch)
1020      throws Exception {
1021      // Appends and syncs are coming in order off the ringbuffer. We depend on this fact. We'll
1022      // add appends to dfsclient as they come in. Batching appends doesn't give any significant
1023      // benefit on measurement. Handler sync calls we will batch up. If we get an exception
1024      // appending an edit, we fail all subsequent appends and syncs with the same exception until
1025      // the WAL is reset. It is important that we not short-circuit and exit early this method.
1026      // It is important that we always go through the attainSafePoint on the end. Another thread,
1027      // the log roller may be waiting on a signal from us here and will just hang without it.
1028
1029      try {
1030        if (truck.type() == RingBufferTruck.Type.SYNC) {
1031          this.syncFutures[this.syncFuturesCount.getAndIncrement()] = truck.unloadSync();
1032          // Force flush of syncs if we are carrying a full complement of syncFutures.
1033          if (this.syncFuturesCount.get() == this.syncFutures.length) {
1034            endOfBatch = true;
1035          }
1036        } else if (truck.type() == RingBufferTruck.Type.APPEND) {
1037          FSWALEntry entry = truck.unloadAppend();
1038          try {
1039            if (this.exception != null) {
1040              // Return to keep processing events coming off the ringbuffer
1041              return;
1042            }
1043            append(entry);
1044          } catch (Exception e) {
1045            // Failed append. Record the exception.
1046            this.exception = e;
1047            // invoking cleanupOutstandingSyncsOnException when append failed with exception,
1048            // it will cleanup existing sync requests recorded in syncFutures but not offered to
1049            // SyncRunner yet,
1050            // so there won't be any sync future left over if no further truck published to
1051            // disruptor.
1052            cleanupOutstandingSyncsOnException(sequence,
1053              this.exception instanceof DamagedWALException
1054                ? this.exception
1055                : new DamagedWALException("On sync", this.exception));
1056            // Return to keep processing events coming off the ringbuffer
1057            return;
1058          } finally {
1059            entry.release();
1060          }
1061        } else {
1062          // What is this if not an append or sync. Fail all up to this!!!
1063          cleanupOutstandingSyncsOnException(sequence,
1064            new IllegalStateException("Neither append nor sync"));
1065          // Return to keep processing.
1066          return;
1067        }
1068
1069        // TODO: Check size and if big go ahead and call a sync if we have enough data.
1070        // This is a sync. If existing exception, fall through. Else look to see if batch.
1071        if (this.exception == null) {
1072          // If not a batch, return to consume more events from the ring buffer before proceeding;
1073          // we want to get up a batch of syncs and appends before we go do a filesystem sync.
1074          if (!endOfBatch || this.syncFuturesCount.get() <= 0) {
1075            return;
1076          }
1077          // syncRunnerIndex is bound to the range [0, Integer.MAX_INT - 1] as follows:
1078          // * The maximum value possible for syncRunners.length is Integer.MAX_INT
1079          // * syncRunnerIndex starts at 0 and is incremented only here
1080          // * after the increment, the value is bounded by the '%' operator to
1081          // [0, syncRunners.length), presuming the value was positive prior to
1082          // the '%' operator.
1083          // * after being bound to [0, Integer.MAX_INT - 1], the new value is stored in
1084          // syncRunnerIndex ensuring that it can't grow without bound and overflow.
1085          // * note that the value after the increment must be positive, because the most it
1086          // could have been prior was Integer.MAX_INT - 1 and we only increment by 1.
1087          this.syncRunnerIndex = (this.syncRunnerIndex + 1) % this.syncRunners.length;
1088          try {
1089            // Below expects that the offer 'transfers' responsibility for the outstanding syncs to
1090            // the syncRunner. We should never get an exception in here.
1091            this.syncRunners[this.syncRunnerIndex].offer(sequence, this.syncFutures,
1092              this.syncFuturesCount.get());
1093          } catch (Exception e) {
1094            // Should NEVER get here.
1095            requestLogRoll(ERROR);
1096            this.exception = new DamagedWALException("Failed offering sync", e);
1097          }
1098        }
1099        // We may have picked up an exception above trying to offer sync
1100        if (this.exception != null) {
1101          cleanupOutstandingSyncsOnException(sequence,
1102            this.exception instanceof DamagedWALException
1103              ? this.exception
1104              : new DamagedWALException("On sync", this.exception));
1105        }
1106        attainSafePoint(sequence);
1107        // It is critical that we offer the futures back to the cache for reuse here after the
1108        // safe point is attained and all the clean up has been done. There have been
1109        // issues with reusing sync futures early causing WAL lockups, see HBASE-25984.
1110        offerDoneSyncsBackToCache();
1111      } catch (Throwable t) {
1112        LOG.error("UNEXPECTED!!! syncFutures.length=" + this.syncFutures.length, t);
1113      }
1114    }
1115
1116    SafePointZigZagLatch attainSafePoint() {
1117      this.zigzagLatch = new SafePointZigZagLatch();
1118      return this.zigzagLatch;
1119    }
1120
1121    /**
1122     * Check if we should attain safe point. If so, go there and then wait till signalled before we
1123     * proceeding.
1124     */
1125    private void attainSafePoint(final long currentSequence) {
1126      if (this.zigzagLatch == null || !this.zigzagLatch.isCocked()) {
1127        return;
1128      }
1129      // If here, another thread is waiting on us to get to safe point. Don't leave it hanging.
1130      beforeWaitOnSafePoint();
1131      try {
1132        // Wait on outstanding syncers; wait for them to finish syncing (unless we've been
1133        // shutdown or unless our latch has been thrown because we have been aborted or unless
1134        // this WAL is broken and we can't get a sync/append to complete).
1135        while (
1136          (!this.shutdown && this.zigzagLatch.isCocked()
1137            && highestSyncedTxid.get() < currentSequence &&
1138            // We could be in here and all syncs are failing or failed. Check for this. Otherwise
1139            // we'll just be stuck here for ever. In other words, ensure there syncs running.
1140            isOutstandingSyncs())
1141            // Wait for all SyncRunners to finish their work so that we can replace the writer
1142            || isOutstandingSyncsFromRunners()
1143        ) {
1144          synchronized (this.safePointWaiter) {
1145            this.safePointWaiter.wait(0, 1);
1146          }
1147        }
1148        // Tell waiting thread we've attained safe point. Can clear this.throwable if set here
1149        // because we know that next event through the ringbuffer will be going to a new WAL
1150        // after we do the zigzaglatch dance.
1151        this.exception = null;
1152        this.zigzagLatch.safePointAttained();
1153      } catch (InterruptedException e) {
1154        LOG.warn("Interrupted ", e);
1155        Thread.currentThread().interrupt();
1156      }
1157    }
1158
1159    /**
1160     * Append to the WAL. Does all CP and WAL listener calls.
1161     */
1162    void append(final FSWALEntry entry) throws Exception {
1163      try {
1164        FSHLog.this.appendEntry(writer, entry);
1165      } catch (Exception e) {
1166        String msg =
1167          "Append sequenceId=" + entry.getKey().getSequenceId() + ", requesting roll of WAL";
1168        LOG.warn(msg, e);
1169        requestLogRoll(ERROR);
1170        throw new DamagedWALException(msg, e);
1171      }
1172    }
1173
1174    @Override
1175    public void onStart() {
1176      for (SyncRunner syncRunner : this.syncRunners) {
1177        syncRunner.start();
1178      }
1179    }
1180
1181    @Override
1182    public void onShutdown() {
1183      for (SyncRunner syncRunner : this.syncRunners) {
1184        syncRunner.interrupt();
1185      }
1186    }
1187  }
1188
1189  /**
1190   * This method gets the pipeline for the current WAL.
1191   */
1192  @Override
1193  DatanodeInfo[] getPipeline() {
1194    if (this.hdfs_out != null) {
1195      if (this.hdfs_out.getWrappedStream() instanceof DFSOutputStream) {
1196        return ((DFSOutputStream) this.hdfs_out.getWrappedStream()).getPipeline();
1197      }
1198    }
1199    return new DatanodeInfo[0];
1200  }
1201
1202  Writer getWriter() {
1203    return this.writer;
1204  }
1205
1206  void setWriter(Writer writer) {
1207    this.writer = writer;
1208  }
1209}