001/* 002 * Licensed to the Apache Software Foundation (ASF) under one 003 * or more contributor license agreements. See the NOTICE file 004 * distributed with this work for additional information 005 * regarding copyright ownership. The ASF licenses this file 006 * to you under the Apache License, Version 2.0 (the 007 * "License"); you may not use this file except in compliance 008 * with the License. You may obtain a copy of the License at 009 * 010 * http://www.apache.org/licenses/LICENSE-2.0 011 * 012 * Unless required by applicable law or agreed to in writing, software 013 * distributed under the License is distributed on an "AS IS" BASIS, 014 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 015 * See the License for the specific language governing permissions and 016 * limitations under the License. 017 */ 018package org.apache.hadoop.hbase.util; 019 020import static org.apache.hbase.thirdparty.com.google.common.base.Preconditions.checkArgument; 021import static org.apache.hbase.thirdparty.com.google.common.base.Preconditions.checkNotNull; 022import static org.apache.hbase.thirdparty.com.google.common.base.Preconditions.checkPositionIndex; 023 024import com.google.protobuf.ByteString; 025import java.io.DataInput; 026import java.io.DataOutput; 027import java.io.IOException; 028import java.io.UnsupportedEncodingException; 029import java.math.BigDecimal; 030import java.math.BigInteger; 031import java.nio.ByteBuffer; 032import java.nio.charset.StandardCharsets; 033import java.security.SecureRandom; 034import java.util.ArrayList; 035import java.util.Arrays; 036import java.util.Collection; 037import java.util.Collections; 038import java.util.Comparator; 039import java.util.Iterator; 040import java.util.List; 041import java.util.Random; 042import org.apache.hadoop.hbase.Cell; 043import org.apache.hadoop.hbase.CellComparator; 044import org.apache.hadoop.hbase.KeyValue; 045import org.apache.hadoop.hbase.unsafe.HBasePlatformDependent; 046import org.apache.hadoop.io.RawComparator; 047import org.apache.hadoop.io.WritableComparator; 048import org.apache.hadoop.io.WritableUtils; 049import org.apache.yetus.audience.InterfaceAudience; 050import org.slf4j.Logger; 051import org.slf4j.LoggerFactory; 052 053import org.apache.hbase.thirdparty.org.apache.commons.collections4.CollectionUtils; 054 055/** 056 * Utility class that handles byte arrays, conversions to/from other types, comparisons, hash code 057 * generation, manufacturing keys for HashMaps or HashSets, and can be used as key in maps or trees. 058 */ 059@InterfaceAudience.Public 060@edu.umd.cs.findbugs.annotations.SuppressWarnings( 061 value = "EQ_CHECK_FOR_OPERAND_NOT_COMPATIBLE_WITH_THIS", 062 justification = "It has been like this forever") 063@SuppressWarnings("MixedMutabilityReturnType") 064public class Bytes implements Comparable<Bytes> { 065 066 // Using the charset canonical name for String/byte[] conversions is much 067 // more efficient due to use of cached encoders/decoders. 068 private static final String UTF8_CSN = StandardCharsets.UTF_8.name(); 069 070 // HConstants.EMPTY_BYTE_ARRAY should be updated if this changed 071 private static final byte[] EMPTY_BYTE_ARRAY = new byte[0]; 072 073 private static final Logger LOG = LoggerFactory.getLogger(Bytes.class); 074 075 /** 076 * Size of boolean in bytes 077 */ 078 public static final int SIZEOF_BOOLEAN = Byte.SIZE / Byte.SIZE; 079 080 /** 081 * Size of byte in bytes 082 */ 083 public static final int SIZEOF_BYTE = SIZEOF_BOOLEAN; 084 085 /** 086 * Size of char in bytes 087 */ 088 public static final int SIZEOF_CHAR = Character.SIZE / Byte.SIZE; 089 090 /** 091 * Size of double in bytes 092 */ 093 public static final int SIZEOF_DOUBLE = Double.SIZE / Byte.SIZE; 094 095 /** 096 * Size of float in bytes 097 */ 098 public static final int SIZEOF_FLOAT = Float.SIZE / Byte.SIZE; 099 100 /** 101 * Size of int in bytes 102 */ 103 public static final int SIZEOF_INT = Integer.SIZE / Byte.SIZE; 104 105 /** 106 * Size of long in bytes 107 */ 108 public static final int SIZEOF_LONG = Long.SIZE / Byte.SIZE; 109 110 /** 111 * Size of short in bytes 112 */ 113 public static final int SIZEOF_SHORT = Short.SIZE / Byte.SIZE; 114 115 /** 116 * Mask to apply to a long to reveal the lower int only. Use like this: int i = 117 * (int)(0xFFFFFFFF00000000L ^ some_long_value); 118 */ 119 public static final long MASK_FOR_LOWER_INT_IN_LONG = 0xFFFFFFFF00000000L; 120 121 /** 122 * Estimate of size cost to pay beyond payload in jvm for instance of byte []. Estimate based on 123 * study of jhat and jprofiler numbers. 124 */ 125 // JHat says BU is 56 bytes. 126 // SizeOf which uses java.lang.instrument says 24 bytes. (3 longs?) 127 public static final int ESTIMATED_HEAP_TAX = 16; 128 129 @InterfaceAudience.Private 130 static final boolean UNSAFE_UNALIGNED = HBasePlatformDependent.unaligned(); 131 132 /** 133 * Returns length of the byte array, returning 0 if the array is null. Useful for calculating 134 * sizes. 135 * @param b byte array, which can be null 136 * @return 0 if b is null, otherwise returns length 137 */ 138 final public static int len(byte[] b) { 139 return b == null ? 0 : b.length; 140 } 141 142 private byte[] bytes; 143 private int offset; 144 private int length; 145 146 /** 147 * Create a zero-size sequence. 148 */ 149 public Bytes() { 150 super(); 151 } 152 153 /** 154 * Create a Bytes using the byte array as the initial value. 155 * @param bytes This array becomes the backing storage for the object. 156 */ 157 public Bytes(byte[] bytes) { 158 this(bytes, 0, bytes.length); 159 } 160 161 /** 162 * Set the new Bytes to the contents of the passed <code>ibw</code>. 163 * @param ibw the value to set this Bytes to. 164 */ 165 public Bytes(final Bytes ibw) { 166 this(ibw.get(), ibw.getOffset(), ibw.getLength()); 167 } 168 169 /** 170 * Set the value to a given byte range 171 * @param bytes the new byte range to set to 172 * @param offset the offset in newData to start at 173 * @param length the number of bytes in the range 174 */ 175 public Bytes(final byte[] bytes, final int offset, final int length) { 176 this.bytes = bytes; 177 this.offset = offset; 178 this.length = length; 179 } 180 181 /** 182 * Copy bytes from ByteString instance. 183 * @param byteString copy from 184 * @deprecated As of release 2.0.0, this will be removed in HBase 3.0.0. 185 */ 186 @Deprecated 187 public Bytes(final ByteString byteString) { 188 this(byteString.toByteArray()); 189 } 190 191 /** 192 * Get the data from the Bytes. 193 * @return The data is only valid between offset and offset+length. 194 */ 195 public byte[] get() { 196 if (this.bytes == null) { 197 throw new IllegalStateException( 198 "Uninitialiized. Null constructor " + "called w/o accompaying readFields invocation"); 199 } 200 return this.bytes; 201 } 202 203 /** Use passed bytes as backing array for this instance. */ 204 public void set(final byte[] b) { 205 set(b, 0, b.length); 206 } 207 208 /** Use passed bytes as backing array for this instance. */ 209 public void set(final byte[] b, final int offset, final int length) { 210 this.bytes = b; 211 this.offset = offset; 212 this.length = length; 213 } 214 215 /** 216 * @return the number of valid bytes in the buffer 217 * @deprecated since 2.0.0 and will be removed in 3.0.0. Use {@link #getLength()} instead. 218 * @see #getLength() 219 * @see <a href="https://issues.apache.org/jira/browse/HBASE-11862">HBASE-11862</a> 220 */ 221 @Deprecated 222 public int getSize() { 223 if (this.bytes == null) { 224 throw new IllegalStateException( 225 "Uninitialiized. Null constructor " + "called w/o accompaying readFields invocation"); 226 } 227 return this.length; 228 } 229 230 /** Returns the number of valid bytes in the buffer */ 231 public int getLength() { 232 if (this.bytes == null) { 233 throw new IllegalStateException( 234 "Uninitialiized. Null constructor " + "called w/o accompaying readFields invocation"); 235 } 236 return this.length; 237 } 238 239 /** Return the offset into the buffer. */ 240 public int getOffset() { 241 return this.offset; 242 } 243 244 /** 245 * @deprecated As of release 2.0.0, this will be removed in HBase 3.0.0. 246 */ 247 @Deprecated 248 public ByteString toByteString() { 249 return ByteString.copyFrom(this.bytes, this.offset, this.length); 250 } 251 252 @Override 253 public int hashCode() { 254 return Bytes.hashCode(bytes, offset, length); 255 } 256 257 /** 258 * Define the sort order of the Bytes. 259 * @param that The other bytes writable 260 * @return Positive if left is bigger than right, 0 if they are equal, and negative if left is 261 * smaller than right. 262 */ 263 @Override 264 public int compareTo(Bytes that) { 265 return BYTES_RAWCOMPARATOR.compare(this.bytes, this.offset, this.length, that.bytes, 266 that.offset, that.length); 267 } 268 269 /** 270 * Compares the bytes in this object to the specified byte array 271 * @return Positive if left is bigger than right, 0 if they are equal, and negative if left is 272 * smaller than right. 273 */ 274 public int compareTo(final byte[] that) { 275 return BYTES_RAWCOMPARATOR.compare(this.bytes, this.offset, this.length, that, 0, that.length); 276 } 277 278 @Override 279 public boolean equals(Object right_obj) { 280 if (right_obj instanceof byte[]) { 281 return compareTo((byte[]) right_obj) == 0; 282 } 283 if (right_obj instanceof Bytes) { 284 return compareTo((Bytes) right_obj) == 0; 285 } 286 return false; 287 } 288 289 @Override 290 public String toString() { 291 return Bytes.toString(bytes, offset, length); 292 } 293 294 /** 295 * Convert a list of byte[] to an array 296 * @param array List of byte []. 297 * @return Array of byte []. 298 */ 299 public static byte[][] toArray(final List<byte[]> array) { 300 // List#toArray doesn't work on lists of byte []. 301 byte[][] results = new byte[array.size()][]; 302 for (int i = 0; i < array.size(); i++) { 303 results[i] = array.get(i); 304 } 305 return results; 306 } 307 308 /** Returns a copy of the bytes referred to by this writable */ 309 public byte[] copyBytes() { 310 return Arrays.copyOfRange(bytes, offset, offset + length); 311 } 312 313 /** Byte array comparator class. */ 314 @InterfaceAudience.Public 315 public static class ByteArrayComparator implements RawComparator<byte[]> { 316 317 public ByteArrayComparator() { 318 super(); 319 } 320 321 @Override 322 public int compare(byte[] left, byte[] right) { 323 return compareTo(left, right); 324 } 325 326 @Override 327 public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) { 328 return LexicographicalComparerHolder.BEST_COMPARER.compareTo(b1, s1, l1, b2, s2, l2); 329 } 330 } 331 332 /** 333 * A {@link ByteArrayComparator} that treats the empty array as the largest value. This is useful 334 * for comparing row end keys for regions. 335 */ 336 // TODO: unfortunately, HBase uses byte[0] as both start and end keys for region 337 // boundaries. Thus semantically, we should treat empty byte array as the smallest value 338 // while comparing row keys, start keys etc; but as the largest value for comparing 339 // region boundaries for endKeys. 340 @InterfaceAudience.Public 341 public static class RowEndKeyComparator extends ByteArrayComparator { 342 @Override 343 public int compare(byte[] left, byte[] right) { 344 return compare(left, 0, left.length, right, 0, right.length); 345 } 346 347 @Override 348 public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) { 349 if (b1 == b2 && s1 == s2 && l1 == l2) { 350 return 0; 351 } 352 if (l1 == 0) { 353 return l2; // 0 or positive 354 } 355 if (l2 == 0) { 356 return -1; 357 } 358 return super.compare(b1, s1, l1, b2, s2, l2); 359 } 360 } 361 362 /** Pass this to TreeMaps where byte [] are keys. */ 363 public final static Comparator<byte[]> BYTES_COMPARATOR = new ByteArrayComparator(); 364 365 /** Use comparing byte arrays, byte-by-byte */ 366 public final static RawComparator<byte[]> BYTES_RAWCOMPARATOR = new ByteArrayComparator(); 367 368 /** 369 * Read byte-array written with a WritableableUtils.vint prefix. 370 * @param in Input to read from. 371 * @return byte array read off <code>in</code> 372 * @throws IOException e 373 */ 374 public static byte[] readByteArray(final DataInput in) throws IOException { 375 int len = WritableUtils.readVInt(in); 376 if (len < 0) { 377 throw new NegativeArraySizeException(Integer.toString(len)); 378 } 379 byte[] result = new byte[len]; 380 in.readFully(result, 0, len); 381 return result; 382 } 383 384 /** 385 * Read byte-array written with a WritableableUtils.vint prefix. IOException is converted to a 386 * RuntimeException. 387 * @param in Input to read from. 388 * @return byte array read off <code>in</code> 389 */ 390 public static byte[] readByteArrayThrowsRuntime(final DataInput in) { 391 try { 392 return readByteArray(in); 393 } catch (Exception e) { 394 throw new RuntimeException(e); 395 } 396 } 397 398 /** 399 * Write byte-array with a WritableableUtils.vint prefix. 400 * @param out output stream to be written to 401 * @param b array to write 402 * @throws IOException e 403 */ 404 public static void writeByteArray(final DataOutput out, final byte[] b) throws IOException { 405 if (b == null) { 406 WritableUtils.writeVInt(out, 0); 407 } else { 408 writeByteArray(out, b, 0, b.length); 409 } 410 } 411 412 /** 413 * Write byte-array to out with a vint length prefix. 414 * @param out output stream 415 * @param b array 416 * @param offset offset into array 417 * @param length length past offset 418 * @throws IOException e 419 */ 420 public static void writeByteArray(final DataOutput out, final byte[] b, final int offset, 421 final int length) throws IOException { 422 WritableUtils.writeVInt(out, length); 423 out.write(b, offset, length); 424 } 425 426 /** 427 * Write byte-array from src to tgt with a vint length prefix. 428 * @param tgt target array 429 * @param tgtOffset offset into target array 430 * @param src source array 431 * @param srcOffset source offset 432 * @param srcLength source length 433 * @return New offset in src array. 434 */ 435 public static int writeByteArray(final byte[] tgt, final int tgtOffset, final byte[] src, 436 final int srcOffset, final int srcLength) { 437 byte[] vint = vintToBytes(srcLength); 438 System.arraycopy(vint, 0, tgt, tgtOffset, vint.length); 439 int offset = tgtOffset + vint.length; 440 System.arraycopy(src, srcOffset, tgt, offset, srcLength); 441 return offset + srcLength; 442 } 443 444 /** 445 * Put bytes at the specified byte array position. 446 * @param tgtBytes the byte array 447 * @param tgtOffset position in the array 448 * @param srcBytes array to write out 449 * @param srcOffset source offset 450 * @param srcLength source length 451 * @return incremented offset 452 */ 453 public static int putBytes(byte[] tgtBytes, int tgtOffset, byte[] srcBytes, int srcOffset, 454 int srcLength) { 455 System.arraycopy(srcBytes, srcOffset, tgtBytes, tgtOffset, srcLength); 456 return tgtOffset + srcLength; 457 } 458 459 /** 460 * Write a single byte out to the specified byte array position. 461 * @param bytes the byte array 462 * @param offset position in the array 463 * @param b byte to write out 464 * @return incremented offset 465 */ 466 public static int putByte(byte[] bytes, int offset, byte b) { 467 bytes[offset] = b; 468 return offset + 1; 469 } 470 471 /** 472 * Add the whole content of the ByteBuffer to the bytes arrays. The ByteBuffer is modified. 473 * @param bytes the byte array 474 * @param offset position in the array 475 * @param buf ByteBuffer to write out 476 * @return incremented offset 477 */ 478 public static int putByteBuffer(byte[] bytes, int offset, ByteBuffer buf) { 479 int len = buf.remaining(); 480 buf.get(bytes, offset, len); 481 return offset + len; 482 } 483 484 /** 485 * Returns a new byte array, copied from the given {@code buf}, from the index 0 (inclusive) to 486 * the limit (exclusive), regardless of the current position. The position and the other index 487 * parameters are not changed. 488 * @param buf a byte buffer 489 * @return the byte array 490 * @see #getBytes(ByteBuffer) 491 */ 492 public static byte[] toBytes(ByteBuffer buf) { 493 ByteBuffer dup = buf.duplicate(); 494 dup.position(0); 495 return readBytes(dup); 496 } 497 498 private static byte[] readBytes(ByteBuffer buf) { 499 byte[] result = new byte[buf.remaining()]; 500 buf.get(result); 501 return result; 502 } 503 504 /** 505 * Convert a byte[] into a string. Charset is assumed to be UTF-8. 506 * @param b Presumed UTF-8 encoded byte array. 507 * @return String made from <code>b</code> 508 */ 509 public static String toString(final byte[] b) { 510 if (b == null) { 511 return null; 512 } 513 return toString(b, 0, b.length); 514 } 515 516 /** 517 * Joins two byte arrays together using a separator. 518 * @param b1 The first byte array. 519 * @param sep The separator to use. 520 * @param b2 The second byte array. 521 */ 522 public static String toString(final byte[] b1, String sep, final byte[] b2) { 523 return toString(b1, 0, b1.length) + sep + toString(b2, 0, b2.length); 524 } 525 526 /** 527 * This method will convert utf8 encoded bytes into a string. If the given byte array is null, 528 * this method will return null. 529 * @param b Presumed UTF-8 encoded byte array. 530 * @param off offset into array 531 * @return String made from <code>b</code> or null 532 */ 533 public static String toString(final byte[] b, int off) { 534 if (b == null) { 535 return null; 536 } 537 int len = b.length - off; 538 if (len <= 0) { 539 return ""; 540 } 541 try { 542 return new String(b, off, len, UTF8_CSN); 543 } catch (UnsupportedEncodingException e) { 544 // should never happen! 545 throw new IllegalArgumentException("UTF8 encoding is not supported", e); 546 } 547 } 548 549 /** 550 * This method will convert utf8 encoded bytes into a string. If the given byte array is null, 551 * this method will return null. 552 * @param b Presumed UTF-8 encoded byte array. 553 * @param off offset into array 554 * @param len length of utf-8 sequence 555 * @return String made from <code>b</code> or null 556 */ 557 public static String toString(final byte[] b, int off, int len) { 558 if (b == null) { 559 return null; 560 } 561 if (len == 0) { 562 return ""; 563 } 564 try { 565 return new String(b, off, len, UTF8_CSN); 566 } catch (UnsupportedEncodingException e) { 567 // should never happen! 568 throw new IllegalArgumentException("UTF8 encoding is not supported", e); 569 } 570 } 571 572 /** 573 * Write a printable representation of a byte array. 574 * @param b byte array 575 * @see #toStringBinary(byte[], int, int) 576 */ 577 public static String toStringBinary(final byte[] b) { 578 if (b == null) return "null"; 579 return toStringBinary(b, 0, b.length); 580 } 581 582 /** 583 * Converts the given byte buffer to a printable representation, from the index 0 (inclusive) to 584 * the limit (exclusive), regardless of the current position. The position and the other index 585 * parameters are not changed. 586 * @param buf a byte buffer 587 * @return a string representation of the buffer's binary contents 588 * @see #toBytes(ByteBuffer) 589 * @see #getBytes(ByteBuffer) 590 */ 591 public static String toStringBinary(ByteBuffer buf) { 592 if (buf == null) return "null"; 593 if (buf.hasArray()) { 594 return toStringBinary(buf.array(), buf.arrayOffset(), buf.limit()); 595 } 596 return toStringBinary(toBytes(buf)); 597 } 598 599 private static final char[] HEX_CHARS_UPPER = 600 { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' }; 601 602 /** 603 * Write a printable representation of a byte array. Non-printable characters are hex escaped in 604 * the format \\x%02X, eg: \x00 \x05 etc 605 * @param b array to write out 606 * @param off offset to start at 607 * @param len length to write 608 * @return string output 609 */ 610 public static String toStringBinary(final byte[] b, int off, int len) { 611 StringBuilder result = new StringBuilder(); 612 // Just in case we are passed a 'len' that is > buffer length... 613 if (off >= b.length) return result.toString(); 614 if (off + len > b.length) len = b.length - off; 615 for (int i = off; i < off + len; ++i) { 616 int ch = b[i] & 0xFF; 617 if (ch >= ' ' && ch <= '~' && ch != '\\') { 618 result.append((char) ch); 619 } else { 620 result.append("\\x"); 621 result.append(HEX_CHARS_UPPER[ch / 0x10]); 622 result.append(HEX_CHARS_UPPER[ch % 0x10]); 623 } 624 } 625 return result.toString(); 626 } 627 628 private static boolean isHexDigit(char c) { 629 return (c >= 'A' && c <= 'F') || (c >= '0' && c <= '9'); 630 } 631 632 /** 633 * Takes a ASCII digit in the range A-F0-9 and returns the corresponding integer/ordinal value. 634 * @param ch The hex digit. 635 * @return The converted hex value as a byte. 636 */ 637 public static byte toBinaryFromHex(byte ch) { 638 if (ch >= 'A' && ch <= 'F') return (byte) ((byte) 10 + (byte) (ch - 'A')); 639 // else 640 return (byte) (ch - '0'); 641 } 642 643 public static byte[] toBytesBinary(String in) { 644 // this may be bigger than we need, but let's be safe. 645 byte[] b = new byte[in.length()]; 646 int size = 0; 647 for (int i = 0; i < in.length(); ++i) { 648 char ch = in.charAt(i); 649 if (ch == '\\' && in.length() > i + 1 && in.charAt(i + 1) == 'x') { 650 // ok, take next 2 hex digits. 651 char hd1 = in.charAt(i + 2); 652 char hd2 = in.charAt(i + 3); 653 654 // they need to be A-F0-9: 655 if (!isHexDigit(hd1) || !isHexDigit(hd2)) { 656 // bogus escape code, ignore: 657 continue; 658 } 659 // turn hex ASCII digit -> number 660 byte d = (byte) ((toBinaryFromHex((byte) hd1) << 4) + toBinaryFromHex((byte) hd2)); 661 662 b[size++] = d; 663 i += 3; // skip 3 664 } else { 665 b[size++] = (byte) ch; 666 } 667 } 668 // resize: 669 byte[] b2 = new byte[size]; 670 System.arraycopy(b, 0, b2, 0, size); 671 return b2; 672 } 673 674 /** 675 * Converts a string to a UTF-8 byte array. 676 * @param s string 677 * @return the byte array 678 */ 679 public static byte[] toBytes(String s) { 680 try { 681 return s.getBytes(UTF8_CSN); 682 } catch (UnsupportedEncodingException e) { 683 // should never happen! 684 throw new IllegalArgumentException("UTF8 decoding is not supported", e); 685 } 686 } 687 688 /** 689 * Convert a boolean to a byte array. True becomes -1 and false becomes 0. 690 * @param b value 691 * @return <code>b</code> encoded in a byte array. 692 */ 693 public static byte[] toBytes(final boolean b) { 694 return new byte[] { b ? (byte) -1 : (byte) 0 }; 695 } 696 697 /** 698 * Reverses {@link #toBytes(boolean)} 699 * @param b array 700 * @return True or false. 701 */ 702 public static boolean toBoolean(final byte[] b) { 703 if (b.length != 1) { 704 throw new IllegalArgumentException("Array has wrong size: " + b.length); 705 } 706 return b[0] != (byte) 0; 707 } 708 709 /** 710 * Convert a long value to a byte array using big-endian. 711 * @param val value to convert 712 * @return the byte array 713 */ 714 public static byte[] toBytes(long val) { 715 byte[] b = new byte[8]; 716 for (int i = 7; i > 0; i--) { 717 b[i] = (byte) val; 718 val >>>= 8; 719 } 720 b[0] = (byte) val; 721 return b; 722 } 723 724 /** 725 * Converts a byte array to a long value. Reverses {@link #toBytes(long)} 726 * @param bytes array 727 * @return the long value 728 */ 729 public static long toLong(byte[] bytes) { 730 return toLong(bytes, 0, SIZEOF_LONG); 731 } 732 733 /** 734 * Converts a byte array to a long value. Assumes there will be {@link #SIZEOF_LONG} bytes 735 * available. 736 * @param bytes bytes 737 * @param offset offset 738 * @return the long value 739 */ 740 public static long toLong(byte[] bytes, int offset) { 741 return toLong(bytes, offset, SIZEOF_LONG); 742 } 743 744 /** 745 * Converts a byte array to a long value. 746 * @param bytes array of bytes 747 * @param offset offset into array 748 * @param length length of data (must be {@link #SIZEOF_LONG}) 749 * @return the long value 750 * @throws IllegalArgumentException if length is not {@link #SIZEOF_LONG} or if there's not enough 751 * room in the array at the offset indicated. 752 */ 753 public static long toLong(byte[] bytes, int offset, final int length) { 754 if (length != SIZEOF_LONG || offset + length > bytes.length) { 755 throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_LONG); 756 } 757 return ConverterHolder.BEST_CONVERTER.toLong(bytes, offset, length); 758 } 759 760 private static IllegalArgumentException explainWrongLengthOrOffset(final byte[] bytes, 761 final int offset, final int length, final int expectedLength) { 762 String reason; 763 if (length != expectedLength) { 764 reason = "Wrong length: " + length + ", expected " + expectedLength; 765 } else { 766 reason = "offset (" + offset + ") + length (" + length + ") exceed the" 767 + " capacity of the array: " + bytes.length; 768 } 769 return new IllegalArgumentException(reason); 770 } 771 772 /** 773 * Put a long value out to the specified byte array position. 774 * @param bytes the byte array 775 * @param offset position in the array 776 * @param val long to write out 777 * @return incremented offset 778 * @throws IllegalArgumentException if the byte array given doesn't have enough room at the offset 779 * specified. 780 */ 781 public static int putLong(byte[] bytes, int offset, long val) { 782 if (bytes.length - offset < SIZEOF_LONG) { 783 throw new IllegalArgumentException("Not enough room to put a long at" + " offset " + offset 784 + " in a " + bytes.length + " byte array"); 785 } 786 return ConverterHolder.BEST_CONVERTER.putLong(bytes, offset, val); 787 } 788 789 /** 790 * Put a long value out to the specified byte array position (Unsafe). 791 * @param bytes the byte array 792 * @param offset position in the array 793 * @param val long to write out 794 * @return incremented offset 795 * @deprecated As of release 2.0.0, this will be removed in HBase 3.0.0. 796 */ 797 @Deprecated 798 public static int putLongUnsafe(byte[] bytes, int offset, long val) { 799 return UnsafeAccess.putLong(bytes, offset, val); 800 } 801 802 /** 803 * Put a float value out to the specified byte array position. Presumes float encoded as IEEE 754 804 * floating-point "single format" 805 * @param bytes byte array 806 * @return Float made from passed byte array. 807 */ 808 public static float toFloat(byte[] bytes) { 809 return toFloat(bytes, 0); 810 } 811 812 /** 813 * Put a float value out to the specified byte array position. Presumes float encoded as IEEE 754 814 * floating-point "single format" 815 * @param bytes array to convert 816 * @param offset offset into array 817 * @return Float made from passed byte array. 818 */ 819 public static float toFloat(byte[] bytes, int offset) { 820 return Float.intBitsToFloat(toInt(bytes, offset, SIZEOF_INT)); 821 } 822 823 /** 824 * Put a float value out to the specified byte array position. 825 * @param bytes byte array 826 * @param offset offset to write to 827 * @param f float value 828 * @return New offset in <code>bytes</code> 829 */ 830 public static int putFloat(byte[] bytes, int offset, float f) { 831 return putInt(bytes, offset, Float.floatToRawIntBits(f)); 832 } 833 834 /** Return the float represented as byte[] */ 835 public static byte[] toBytes(final float f) { 836 // Encode it as int 837 return Bytes.toBytes(Float.floatToRawIntBits(f)); 838 } 839 840 /** Return double made from passed bytes. */ 841 public static double toDouble(final byte[] bytes) { 842 return toDouble(bytes, 0); 843 } 844 845 /** Return double made from passed bytes. */ 846 public static double toDouble(final byte[] bytes, final int offset) { 847 return Double.longBitsToDouble(toLong(bytes, offset, SIZEOF_LONG)); 848 } 849 850 /** 851 * Put a double value out to the specified byte array position as the IEEE 754 double format. 852 * @param bytes byte array 853 * @param offset offset to write to 854 * @param d value 855 * @return New offset into array <code>bytes</code> 856 */ 857 public static int putDouble(byte[] bytes, int offset, double d) { 858 return putLong(bytes, offset, Double.doubleToLongBits(d)); 859 } 860 861 /** 862 * Serialize a double as the IEEE 754 double format output. The resultant array will be 8 bytes 863 * long. 864 * @param d value 865 * @return the double represented as byte [] 866 */ 867 public static byte[] toBytes(final double d) { 868 // Encode it as a long 869 return Bytes.toBytes(Double.doubleToRawLongBits(d)); 870 } 871 872 /** 873 * Convert an int value to a byte array. Big-endian. Same as what DataOutputStream.writeInt does. 874 * @param val value 875 * @return the byte array 876 */ 877 public static byte[] toBytes(int val) { 878 byte[] b = new byte[4]; 879 for (int i = 3; i > 0; i--) { 880 b[i] = (byte) val; 881 val >>>= 8; 882 } 883 b[0] = (byte) val; 884 return b; 885 } 886 887 /** 888 * Converts a byte array to an int value 889 * @param bytes byte array 890 * @return the int value 891 */ 892 public static int toInt(byte[] bytes) { 893 return toInt(bytes, 0, SIZEOF_INT); 894 } 895 896 /** 897 * Converts a byte array to an int value 898 * @param bytes byte array 899 * @param offset offset into array 900 * @return the int value 901 */ 902 public static int toInt(byte[] bytes, int offset) { 903 return toInt(bytes, offset, SIZEOF_INT); 904 } 905 906 /** 907 * Converts a byte array to an int value 908 * @param bytes byte array 909 * @param offset offset into array 910 * @param length length of int (has to be {@link #SIZEOF_INT}) 911 * @return the int value 912 * @throws IllegalArgumentException if length is not {@link #SIZEOF_INT} or if there's not enough 913 * room in the array at the offset indicated. 914 */ 915 public static int toInt(byte[] bytes, int offset, final int length) { 916 if (length != SIZEOF_INT || offset + length > bytes.length) { 917 throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_INT); 918 } 919 return ConverterHolder.BEST_CONVERTER.toInt(bytes, offset, length); 920 } 921 922 /** 923 * Converts a byte array to an int value (Unsafe version) 924 * @param bytes byte array 925 * @param offset offset into array 926 * @return the int value 927 * @deprecated As of release 2.0.0, this will be removed in HBase 3.0.0. 928 */ 929 @Deprecated 930 public static int toIntUnsafe(byte[] bytes, int offset) { 931 return UnsafeAccess.toInt(bytes, offset); 932 } 933 934 /** 935 * Converts a byte array to an short value (Unsafe version) 936 * @param bytes byte array 937 * @param offset offset into array 938 * @return the short value 939 * @deprecated As of release 2.0.0, this will be removed in HBase 3.0.0. 940 */ 941 @Deprecated 942 public static short toShortUnsafe(byte[] bytes, int offset) { 943 return UnsafeAccess.toShort(bytes, offset); 944 } 945 946 /** 947 * Converts a byte array to an long value (Unsafe version) 948 * @param bytes byte array 949 * @param offset offset into array 950 * @return the long value 951 * @deprecated As of release 2.0.0, this will be removed in HBase 3.0.0. 952 */ 953 @Deprecated 954 public static long toLongUnsafe(byte[] bytes, int offset) { 955 return UnsafeAccess.toLong(bytes, offset); 956 } 957 958 /** 959 * Converts a byte array to an int value 960 * @param bytes byte array 961 * @param offset offset into array 962 * @param length how many bytes should be considered for creating int 963 * @return the int value 964 * @throws IllegalArgumentException if there's not enough room in the array at the offset 965 * indicated. 966 */ 967 public static int readAsInt(byte[] bytes, int offset, final int length) { 968 if (offset + length > bytes.length) { 969 throw new IllegalArgumentException("offset (" + offset + ") + length (" + length 970 + ") exceed the" + " capacity of the array: " + bytes.length); 971 } 972 int n = 0; 973 for (int i = offset; i < (offset + length); i++) { 974 n <<= 8; 975 n ^= bytes[i] & 0xFF; 976 } 977 return n; 978 } 979 980 /** 981 * Put an int value out to the specified byte array position. 982 * @param bytes the byte array 983 * @param offset position in the array 984 * @param val int to write out 985 * @return incremented offset 986 * @throws IllegalArgumentException if the byte array given doesn't have enough room at the offset 987 * specified. 988 */ 989 public static int putInt(byte[] bytes, int offset, int val) { 990 if (bytes.length - offset < SIZEOF_INT) { 991 throw new IllegalArgumentException("Not enough room to put an int at" + " offset " + offset 992 + " in a " + bytes.length + " byte array"); 993 } 994 return ConverterHolder.BEST_CONVERTER.putInt(bytes, offset, val); 995 } 996 997 /** 998 * Put an int value out to the specified byte array position (Unsafe). 999 * @param bytes the byte array 1000 * @param offset position in the array 1001 * @param val int to write out 1002 * @return incremented offset 1003 * @deprecated As of release 2.0.0, this will be removed in HBase 3.0.0. 1004 */ 1005 @Deprecated 1006 public static int putIntUnsafe(byte[] bytes, int offset, int val) { 1007 return UnsafeAccess.putInt(bytes, offset, val); 1008 } 1009 1010 /** 1011 * Convert a short value to a byte array of {@link #SIZEOF_SHORT} bytes long. 1012 * @param val value 1013 * @return the byte array 1014 */ 1015 public static byte[] toBytes(short val) { 1016 byte[] b = new byte[SIZEOF_SHORT]; 1017 b[1] = (byte) val; 1018 val >>= 8; 1019 b[0] = (byte) val; 1020 return b; 1021 } 1022 1023 /** 1024 * Converts a byte array to a short value 1025 * @param bytes byte array 1026 * @return the short value 1027 */ 1028 public static short toShort(byte[] bytes) { 1029 return toShort(bytes, 0, SIZEOF_SHORT); 1030 } 1031 1032 /** 1033 * Converts a byte array to a short value 1034 * @param bytes byte array 1035 * @param offset offset into array 1036 * @return the short value 1037 */ 1038 public static short toShort(byte[] bytes, int offset) { 1039 return toShort(bytes, offset, SIZEOF_SHORT); 1040 } 1041 1042 /** 1043 * Converts a byte array to a short value 1044 * @param bytes byte array 1045 * @param offset offset into array 1046 * @param length length, has to be {@link #SIZEOF_SHORT} 1047 * @return the short value 1048 * @throws IllegalArgumentException if length is not {@link #SIZEOF_SHORT} or if there's not 1049 * enough room in the array at the offset indicated. 1050 */ 1051 public static short toShort(byte[] bytes, int offset, final int length) { 1052 if (length != SIZEOF_SHORT || offset + length > bytes.length) { 1053 throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_SHORT); 1054 } 1055 return ConverterHolder.BEST_CONVERTER.toShort(bytes, offset, length); 1056 } 1057 1058 /** 1059 * Returns a new byte array, copied from the given {@code buf}, from the position (inclusive) to 1060 * the limit (exclusive). The position and the other index parameters are not changed. 1061 * @param buf a byte buffer 1062 * @return the byte array 1063 * @see #toBytes(ByteBuffer) 1064 */ 1065 public static byte[] getBytes(ByteBuffer buf) { 1066 return readBytes(buf.duplicate()); 1067 } 1068 1069 /** 1070 * Put a short value out to the specified byte array position. 1071 * @param bytes the byte array 1072 * @param offset position in the array 1073 * @param val short to write out 1074 * @return incremented offset 1075 * @throws IllegalArgumentException if the byte array given doesn't have enough room at the offset 1076 * specified. 1077 */ 1078 public static int putShort(byte[] bytes, int offset, short val) { 1079 if (bytes.length - offset < SIZEOF_SHORT) { 1080 throw new IllegalArgumentException("Not enough room to put a short at" + " offset " + offset 1081 + " in a " + bytes.length + " byte array"); 1082 } 1083 return ConverterHolder.BEST_CONVERTER.putShort(bytes, offset, val); 1084 } 1085 1086 /** 1087 * Put a short value out to the specified byte array position (Unsafe). 1088 * @param bytes the byte array 1089 * @param offset position in the array 1090 * @param val short to write out 1091 * @return incremented offset 1092 * @deprecated As of release 2.0.0, this will be removed in HBase 3.0.0. 1093 */ 1094 @Deprecated 1095 public static int putShortUnsafe(byte[] bytes, int offset, short val) { 1096 return UnsafeAccess.putShort(bytes, offset, val); 1097 } 1098 1099 /** 1100 * Put an int value as short out to the specified byte array position. Only the lower 2 bytes of 1101 * the short will be put into the array. The caller of the API need to make sure they will not 1102 * loose the value by doing so. This is useful to store an unsigned short which is represented as 1103 * int in other parts. 1104 * @param bytes the byte array 1105 * @param offset position in the array 1106 * @param val value to write out 1107 * @return incremented offset 1108 * @throws IllegalArgumentException if the byte array given doesn't have enough room at the offset 1109 * specified. 1110 */ 1111 public static int putAsShort(byte[] bytes, int offset, int val) { 1112 if (bytes.length - offset < SIZEOF_SHORT) { 1113 throw new IllegalArgumentException("Not enough room to put a short at" + " offset " + offset 1114 + " in a " + bytes.length + " byte array"); 1115 } 1116 bytes[offset + 1] = (byte) val; 1117 val >>= 8; 1118 bytes[offset] = (byte) val; 1119 return offset + SIZEOF_SHORT; 1120 } 1121 1122 /** Convert a BigDecimal value to a byte array */ 1123 public static byte[] toBytes(BigDecimal val) { 1124 byte[] valueBytes = val.unscaledValue().toByteArray(); 1125 byte[] result = new byte[valueBytes.length + SIZEOF_INT]; 1126 int offset = putInt(result, 0, val.scale()); 1127 putBytes(result, offset, valueBytes, 0, valueBytes.length); 1128 return result; 1129 } 1130 1131 /** Converts a byte array to a BigDecimal */ 1132 public static BigDecimal toBigDecimal(byte[] bytes) { 1133 return toBigDecimal(bytes, 0, bytes.length); 1134 } 1135 1136 /** Converts a byte array to a BigDecimal value */ 1137 public static BigDecimal toBigDecimal(byte[] bytes, int offset, final int length) { 1138 if (bytes == null || length < SIZEOF_INT + 1 || (offset + length > bytes.length)) { 1139 return null; 1140 } 1141 1142 int scale = toInt(bytes, offset); 1143 byte[] tcBytes = new byte[length - SIZEOF_INT]; 1144 System.arraycopy(bytes, offset + SIZEOF_INT, tcBytes, 0, length - SIZEOF_INT); 1145 return new BigDecimal(new BigInteger(tcBytes), scale); 1146 } 1147 1148 /** 1149 * Put a BigDecimal value out to the specified byte array position. 1150 * @param bytes the byte array 1151 * @param offset position in the array 1152 * @param val BigDecimal to write out 1153 * @return incremented offset 1154 */ 1155 public static int putBigDecimal(byte[] bytes, int offset, BigDecimal val) { 1156 if (bytes == null) { 1157 return offset; 1158 } 1159 1160 byte[] valueBytes = val.unscaledValue().toByteArray(); 1161 byte[] result = new byte[valueBytes.length + SIZEOF_INT]; 1162 offset = putInt(result, offset, val.scale()); 1163 return putBytes(result, offset, valueBytes, 0, valueBytes.length); 1164 } 1165 1166 /** 1167 * Encode a long value as a variable length integer. 1168 * @param vint Integer to make a vint of. 1169 * @return Vint as bytes array. 1170 */ 1171 public static byte[] vintToBytes(final long vint) { 1172 long i = vint; 1173 int size = WritableUtils.getVIntSize(i); 1174 byte[] result = new byte[size]; 1175 int offset = 0; 1176 if (i >= -112 && i <= 127) { 1177 result[offset] = (byte) i; 1178 return result; 1179 } 1180 1181 int len = -112; 1182 if (i < 0) { 1183 i ^= -1L; // take one's complement' 1184 len = -120; 1185 } 1186 1187 long tmp = i; 1188 while (tmp != 0) { 1189 tmp = tmp >> 8; 1190 len--; 1191 } 1192 1193 result[offset++] = (byte) len; 1194 1195 len = (len < -120) ? -(len + 120) : -(len + 112); 1196 1197 for (int idx = len; idx != 0; idx--) { 1198 int shiftbits = (idx - 1) * 8; 1199 long mask = 0xFFL << shiftbits; 1200 result[offset++] = (byte) ((i & mask) >> shiftbits); 1201 } 1202 return result; 1203 } 1204 1205 /** 1206 * Reads a zero-compressed encoded long from input buffer and returns it. 1207 * @param buffer buffer to convert 1208 * @return vint bytes as an integer. 1209 */ 1210 public static long bytesToVint(final byte[] buffer) { 1211 int offset = 0; 1212 byte firstByte = buffer[offset++]; 1213 int len = WritableUtils.decodeVIntSize(firstByte); 1214 if (len == 1) { 1215 return firstByte; 1216 } 1217 long i = 0; 1218 for (int idx = 0; idx < len - 1; idx++) { 1219 byte b = buffer[offset++]; 1220 i = i << 8; 1221 i = i | (b & 0xFF); 1222 } 1223 return (WritableUtils.isNegativeVInt(firstByte) ? ~i : i); 1224 } 1225 1226 /** 1227 * Reads a zero-compressed encoded long from input buffer and returns it. 1228 * @param buffer Binary array 1229 * @param offset Offset into array at which vint begins. 1230 * @throws java.io.IOException e 1231 * @return deserialized long from buffer. 1232 * @deprecated since 0.98.12. Use {@link #readAsVLong(byte[],int)} instead. 1233 * @see #readAsVLong(byte[], int) 1234 * @see <a href="https://issues.apache.org/jira/browse/HBASE-6919">HBASE-6919</a> 1235 */ 1236 @Deprecated 1237 public static long readVLong(final byte[] buffer, final int offset) throws IOException { 1238 return readAsVLong(buffer, offset); 1239 } 1240 1241 /** 1242 * Reads a zero-compressed encoded long from input buffer and returns it. 1243 * @param buffer Binary array 1244 * @param offset Offset into array at which vint begins. 1245 * @return deserialized long from buffer. 1246 */ 1247 public static long readAsVLong(final byte[] buffer, final int offset) { 1248 byte firstByte = buffer[offset]; 1249 int len = WritableUtils.decodeVIntSize(firstByte); 1250 if (len == 1) { 1251 return firstByte; 1252 } 1253 long i = 0; 1254 for (int idx = 0; idx < len - 1; idx++) { 1255 byte b = buffer[offset + 1 + idx]; 1256 i = i << 8; 1257 i = i | (b & 0xFF); 1258 } 1259 return (WritableUtils.isNegativeVInt(firstByte) ? ~i : i); 1260 } 1261 1262 /** 1263 * Lexicographically compare two arrays. 1264 * @param left left operand 1265 * @param right right operand 1266 * @return 0 if equal, < 0 if left is less than right, etc. 1267 */ 1268 public static int compareTo(final byte[] left, final byte[] right) { 1269 return LexicographicalComparerHolder.BEST_COMPARER.compareTo(left, 0, 1270 left == null ? 0 : left.length, right, 0, right == null ? 0 : right.length); 1271 } 1272 1273 /** 1274 * Lexicographically compare two arrays. 1275 * @param buffer1 left operand 1276 * @param buffer2 right operand 1277 * @param offset1 Where to start comparing in the left buffer 1278 * @param offset2 Where to start comparing in the right buffer 1279 * @param length1 How much to compare from the left buffer 1280 * @param length2 How much to compare from the right buffer 1281 * @return 0 if equal, < 0 if left is less than right, etc. 1282 */ 1283 public static int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2, 1284 int length2) { 1285 return LexicographicalComparerHolder.BEST_COMPARER.compareTo(buffer1, offset1, length1, buffer2, 1286 offset2, length2); 1287 } 1288 1289 interface Comparer<T> { 1290 int compareTo(T buffer1, int offset1, int length1, T buffer2, int offset2, int length2); 1291 } 1292 1293 static abstract class Converter { 1294 abstract long toLong(byte[] bytes, int offset, int length); 1295 1296 abstract int putLong(byte[] bytes, int offset, long val); 1297 1298 abstract int toInt(byte[] bytes, int offset, final int length); 1299 1300 abstract int putInt(byte[] bytes, int offset, int val); 1301 1302 abstract short toShort(byte[] bytes, int offset, final int length); 1303 1304 abstract int putShort(byte[] bytes, int offset, short val); 1305 1306 } 1307 1308 static abstract class CommonPrefixer { 1309 abstract int findCommonPrefix(byte[] left, int leftOffset, int leftLength, byte[] right, 1310 int rightOffset, int rightLength); 1311 } 1312 1313 @InterfaceAudience.Private 1314 static Comparer<byte[]> lexicographicalComparerJavaImpl() { 1315 return LexicographicalComparerHolder.PureJavaComparer.INSTANCE; 1316 } 1317 1318 static class ConverterHolder { 1319 static final String UNSAFE_CONVERTER_NAME = 1320 ConverterHolder.class.getName() + "$UnsafeConverter"; 1321 1322 static final Converter BEST_CONVERTER = getBestConverter(); 1323 1324 /** 1325 * Returns the Unsafe-using Converter, or falls back to the pure-Java implementation if unable 1326 * to do so. 1327 */ 1328 static Converter getBestConverter() { 1329 try { 1330 Class<?> theClass = Class.forName(UNSAFE_CONVERTER_NAME); 1331 1332 // yes, UnsafeComparer does implement Comparer<byte[]> 1333 @SuppressWarnings("unchecked") 1334 Converter converter = (Converter) theClass.getConstructor().newInstance(); 1335 return converter; 1336 } catch (Throwable t) { // ensure we really catch *everything* 1337 return PureJavaConverter.INSTANCE; 1338 } 1339 } 1340 1341 protected static final class PureJavaConverter extends Converter { 1342 static final PureJavaConverter INSTANCE = new PureJavaConverter(); 1343 1344 private PureJavaConverter() { 1345 } 1346 1347 @Override 1348 long toLong(byte[] bytes, int offset, int length) { 1349 long l = 0; 1350 for (int i = offset; i < offset + length; i++) { 1351 l <<= 8; 1352 l ^= bytes[i] & 0xFF; 1353 } 1354 return l; 1355 } 1356 1357 @Override 1358 int putLong(byte[] bytes, int offset, long val) { 1359 for (int i = offset + 7; i > offset; i--) { 1360 bytes[i] = (byte) val; 1361 val >>>= 8; 1362 } 1363 bytes[offset] = (byte) val; 1364 return offset + SIZEOF_LONG; 1365 } 1366 1367 @Override 1368 int toInt(byte[] bytes, int offset, int length) { 1369 int n = 0; 1370 for (int i = offset; i < (offset + length); i++) { 1371 n <<= 8; 1372 n ^= bytes[i] & 0xFF; 1373 } 1374 return n; 1375 } 1376 1377 @Override 1378 int putInt(byte[] bytes, int offset, int val) { 1379 for (int i = offset + 3; i > offset; i--) { 1380 bytes[i] = (byte) val; 1381 val >>>= 8; 1382 } 1383 bytes[offset] = (byte) val; 1384 return offset + SIZEOF_INT; 1385 } 1386 1387 @Override 1388 short toShort(byte[] bytes, int offset, int length) { 1389 short n = 0; 1390 n = (short) ((n ^ bytes[offset]) & 0xFF); 1391 n = (short) (n << 8); 1392 n ^= (short) (bytes[offset + 1] & 0xFF); 1393 return n; 1394 } 1395 1396 @Override 1397 int putShort(byte[] bytes, int offset, short val) { 1398 bytes[offset + 1] = (byte) val; 1399 val >>= 8; 1400 bytes[offset] = (byte) val; 1401 return offset + SIZEOF_SHORT; 1402 } 1403 } 1404 1405 protected static final class UnsafeConverter extends Converter { 1406 1407 public UnsafeConverter() { 1408 } 1409 1410 static { 1411 if (!UNSAFE_UNALIGNED) { 1412 // It doesn't matter what we throw; 1413 // it's swallowed in getBestComparer(). 1414 throw new Error(); 1415 } 1416 1417 // sanity check - this should never fail 1418 if (HBasePlatformDependent.arrayIndexScale(byte[].class) != 1) { 1419 throw new AssertionError(); 1420 } 1421 } 1422 1423 @Override 1424 long toLong(byte[] bytes, int offset, int length) { 1425 return UnsafeAccess.toLong(bytes, offset); 1426 } 1427 1428 @Override 1429 int putLong(byte[] bytes, int offset, long val) { 1430 return UnsafeAccess.putLong(bytes, offset, val); 1431 } 1432 1433 @Override 1434 int toInt(byte[] bytes, int offset, int length) { 1435 return UnsafeAccess.toInt(bytes, offset); 1436 } 1437 1438 @Override 1439 int putInt(byte[] bytes, int offset, int val) { 1440 return UnsafeAccess.putInt(bytes, offset, val); 1441 } 1442 1443 @Override 1444 short toShort(byte[] bytes, int offset, int length) { 1445 return UnsafeAccess.toShort(bytes, offset); 1446 } 1447 1448 @Override 1449 int putShort(byte[] bytes, int offset, short val) { 1450 return UnsafeAccess.putShort(bytes, offset, val); 1451 } 1452 } 1453 } 1454 1455 /** 1456 * Provides a lexicographical comparer implementation; either a Java implementation or a faster 1457 * implementation based on {@code Unsafe}. 1458 * <p> 1459 * Uses reflection to gracefully fall back to the Java implementation if {@code Unsafe} isn't 1460 * available. 1461 */ 1462 @InterfaceAudience.Private 1463 static class LexicographicalComparerHolder { 1464 static final String UNSAFE_COMPARER_NAME = 1465 LexicographicalComparerHolder.class.getName() + "$UnsafeComparer"; 1466 1467 static final Comparer<byte[]> BEST_COMPARER = getBestComparer(); 1468 1469 /** 1470 * Returns the Unsafe-using Comparer, or falls back to the pure-Java implementation if unable to 1471 * do so. 1472 */ 1473 static Comparer<byte[]> getBestComparer() { 1474 try { 1475 Class<?> theClass = Class.forName(UNSAFE_COMPARER_NAME); 1476 1477 // yes, UnsafeComparer does implement Comparer<byte[]> 1478 @SuppressWarnings("unchecked") 1479 Comparer<byte[]> comparer = (Comparer<byte[]>) theClass.getEnumConstants()[0]; 1480 return comparer; 1481 } catch (Throwable t) { // ensure we really catch *everything* 1482 return lexicographicalComparerJavaImpl(); 1483 } 1484 } 1485 1486 enum PureJavaComparer implements Comparer<byte[]> { 1487 INSTANCE; 1488 1489 @Override 1490 public int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2, 1491 int length2) { 1492 // Short circuit equal case 1493 if (buffer1 == buffer2 && offset1 == offset2 && length1 == length2) { 1494 return 0; 1495 } 1496 // Bring WritableComparator code local 1497 int end1 = offset1 + length1; 1498 int end2 = offset2 + length2; 1499 for (int i = offset1, j = offset2; i < end1 && j < end2; i++, j++) { 1500 int a = (buffer1[i] & 0xff); 1501 int b = (buffer2[j] & 0xff); 1502 if (a != b) { 1503 return a - b; 1504 } 1505 } 1506 return length1 - length2; 1507 } 1508 } 1509 1510 @InterfaceAudience.Private 1511 enum UnsafeComparer implements Comparer<byte[]> { 1512 INSTANCE; 1513 1514 static { 1515 if (!UNSAFE_UNALIGNED) { 1516 // It doesn't matter what we throw; 1517 // it's swallowed in getBestComparer(). 1518 throw new Error(); 1519 } 1520 1521 // sanity check - this should never fail 1522 if (HBasePlatformDependent.arrayIndexScale(byte[].class) != 1) { 1523 throw new AssertionError(); 1524 } 1525 } 1526 1527 /** 1528 * Lexicographically compare two arrays. 1529 * @param buffer1 left operand 1530 * @param buffer2 right operand 1531 * @param offset1 Where to start comparing in the left buffer 1532 * @param offset2 Where to start comparing in the right buffer 1533 * @param length1 How much to compare from the left buffer 1534 * @param length2 How much to compare from the right buffer 1535 * @return 0 if equal, < 0 if left is less than right, etc. 1536 */ 1537 @Override 1538 public int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2, 1539 int length2) { 1540 1541 // Short circuit equal case 1542 if (buffer1 == buffer2 && offset1 == offset2 && length1 == length2) { 1543 return 0; 1544 } 1545 final int stride = 8; 1546 final int minLength = Math.min(length1, length2); 1547 int strideLimit = minLength & ~(stride - 1); 1548 final long offset1Adj = offset1 + UnsafeAccess.BYTE_ARRAY_BASE_OFFSET; 1549 final long offset2Adj = offset2 + UnsafeAccess.BYTE_ARRAY_BASE_OFFSET; 1550 int i; 1551 1552 /* 1553 * Compare 8 bytes at a time. Benchmarking on x86 shows a stride of 8 bytes is no slower 1554 * than 4 bytes even on 32-bit. On the other hand, it is substantially faster on 64-bit. 1555 */ 1556 for (i = 0; i < strideLimit; i += stride) { 1557 long lw = HBasePlatformDependent.getLong(buffer1, offset1Adj + i); 1558 long rw = HBasePlatformDependent.getLong(buffer2, offset2Adj + i); 1559 if (lw != rw) { 1560 if (!UnsafeAccess.LITTLE_ENDIAN) { 1561 return ((lw + Long.MIN_VALUE) < (rw + Long.MIN_VALUE)) ? -1 : 1; 1562 } 1563 1564 /* 1565 * We want to compare only the first index where left[index] != right[index]. This 1566 * corresponds to the least significant nonzero byte in lw ^ rw, since lw and rw are 1567 * little-endian. Long.numberOfTrailingZeros(diff) tells us the least significant 1568 * nonzero bit, and zeroing out the first three bits of L.nTZ gives us the shift to get 1569 * that least significant nonzero byte. This comparison logic is based on UnsignedBytes 1570 * comparator from guava v21 1571 */ 1572 int n = Long.numberOfTrailingZeros(lw ^ rw) & ~0x7; 1573 return ((int) ((lw >>> n) & 0xFF)) - ((int) ((rw >>> n) & 0xFF)); 1574 } 1575 } 1576 1577 // The epilogue to cover the last (minLength % stride) elements. 1578 for (; i < minLength; i++) { 1579 int a = (buffer1[offset1 + i] & 0xFF); 1580 int b = (buffer2[offset2 + i] & 0xFF); 1581 if (a != b) { 1582 return a - b; 1583 } 1584 } 1585 return length1 - length2; 1586 } 1587 } 1588 } 1589 1590 static class CommonPrefixerHolder { 1591 static final String UNSAFE_COMMON_PREFIXER_NAME = 1592 CommonPrefixerHolder.class.getName() + "$UnsafeCommonPrefixer"; 1593 1594 static final CommonPrefixer BEST_COMMON_PREFIXER = getBestCommonPrefixer(); 1595 1596 static CommonPrefixer getBestCommonPrefixer() { 1597 try { 1598 Class<? extends CommonPrefixer> theClass = 1599 Class.forName(UNSAFE_COMMON_PREFIXER_NAME).asSubclass(CommonPrefixer.class); 1600 1601 return theClass.getConstructor().newInstance(); 1602 } catch (Throwable t) { // ensure we really catch *everything* 1603 return CommonPrefixerHolder.PureJavaCommonPrefixer.INSTANCE; 1604 } 1605 } 1606 1607 static final class PureJavaCommonPrefixer extends CommonPrefixer { 1608 static final PureJavaCommonPrefixer INSTANCE = new PureJavaCommonPrefixer(); 1609 1610 private PureJavaCommonPrefixer() { 1611 } 1612 1613 @Override 1614 public int findCommonPrefix(byte[] left, int leftOffset, int leftLength, byte[] right, 1615 int rightOffset, int rightLength) { 1616 int length = Math.min(leftLength, rightLength); 1617 int result = 0; 1618 1619 while (result < length && left[leftOffset + result] == right[rightOffset + result]) { 1620 result++; 1621 } 1622 return result; 1623 } 1624 } 1625 1626 static final class UnsafeCommonPrefixer extends CommonPrefixer { 1627 1628 static { 1629 if (!UNSAFE_UNALIGNED) { 1630 throw new Error(); 1631 } 1632 1633 // sanity check - this should never fail 1634 if (HBasePlatformDependent.arrayIndexScale(byte[].class) != 1) { 1635 throw new AssertionError(); 1636 } 1637 } 1638 1639 public UnsafeCommonPrefixer() { 1640 } 1641 1642 @Override 1643 public int findCommonPrefix(byte[] left, int leftOffset, int leftLength, byte[] right, 1644 int rightOffset, int rightLength) { 1645 final int stride = 8; 1646 final int minLength = Math.min(leftLength, rightLength); 1647 int strideLimit = minLength & ~(stride - 1); 1648 final long leftOffsetAdj = leftOffset + UnsafeAccess.BYTE_ARRAY_BASE_OFFSET; 1649 final long rightOffsetAdj = rightOffset + UnsafeAccess.BYTE_ARRAY_BASE_OFFSET; 1650 int result = 0; 1651 int i; 1652 1653 for (i = 0; i < strideLimit; i += stride) { 1654 long lw = HBasePlatformDependent.getLong(left, leftOffsetAdj + i); 1655 long rw = HBasePlatformDependent.getLong(right, rightOffsetAdj + i); 1656 if (lw != rw) { 1657 if (!UnsafeAccess.LITTLE_ENDIAN) { 1658 return result + (Long.numberOfLeadingZeros(lw ^ rw) / Bytes.SIZEOF_LONG); 1659 } else { 1660 return result + (Long.numberOfTrailingZeros(lw ^ rw) / Bytes.SIZEOF_LONG); 1661 } 1662 } else { 1663 result += Bytes.SIZEOF_LONG; 1664 } 1665 } 1666 1667 // The epilogue to cover the last (minLength % stride) elements. 1668 for (; i < minLength; i++) { 1669 int il = (left[leftOffset + i]); 1670 int ir = (right[rightOffset + i]); 1671 if (il != ir) { 1672 return result; 1673 } else { 1674 result++; 1675 } 1676 } 1677 1678 return result; 1679 } 1680 } 1681 } 1682 1683 /** 1684 * Lexicographically determine the equality of two arrays. 1685 * @param left left operand 1686 * @param right right operand 1687 * @return True if equal 1688 */ 1689 public static boolean equals(final byte[] left, final byte[] right) { 1690 // Could use Arrays.equals? 1691 // noinspection SimplifiableConditionalExpression 1692 if (left == right) return true; 1693 if (left == null || right == null) return false; 1694 if (left.length != right.length) return false; 1695 if (left.length == 0) return true; 1696 1697 // Since we're often comparing adjacent sorted data, 1698 // it's usual to have equal arrays except for the very last byte 1699 // so check that first 1700 if (left[left.length - 1] != right[right.length - 1]) return false; 1701 1702 return compareTo(left, right) == 0; 1703 } 1704 1705 /** 1706 * Lexicographically determine the equality of two arrays. 1707 * @param left left operand 1708 * @param leftOffset offset into left operand 1709 * @param leftLen length of left operand 1710 * @param right right operand 1711 * @param rightOffset offset into right operand 1712 * @param rightLen length of right operand 1713 * @return True if equal 1714 */ 1715 public static boolean equals(final byte[] left, int leftOffset, int leftLen, final byte[] right, 1716 int rightOffset, int rightLen) { 1717 // short circuit case 1718 if (left == right && leftOffset == rightOffset && leftLen == rightLen) { 1719 return true; 1720 } 1721 // different lengths fast check 1722 if (leftLen != rightLen) { 1723 return false; 1724 } 1725 if (leftLen == 0) { 1726 return true; 1727 } 1728 1729 // Since we're often comparing adjacent sorted data, 1730 // it's usual to have equal arrays except for the very last byte 1731 // so check that first 1732 if (left[leftOffset + leftLen - 1] != right[rightOffset + rightLen - 1]) return false; 1733 1734 return LexicographicalComparerHolder.BEST_COMPARER.compareTo(left, leftOffset, leftLen, right, 1735 rightOffset, rightLen) == 0; 1736 } 1737 1738 /** 1739 * Lexicographically determine the equality of two byte[], one as ByteBuffer. 1740 * @param a left operand 1741 * @param buf right operand 1742 * @return True if equal 1743 */ 1744 public static boolean equals(byte[] a, ByteBuffer buf) { 1745 if (a == null) return buf == null; 1746 if (buf == null) return false; 1747 if (a.length != buf.remaining()) return false; 1748 1749 // Thou shalt not modify the original byte buffer in what should be read only operations. 1750 ByteBuffer b = buf.duplicate(); 1751 for (byte anA : a) { 1752 if (anA != b.get()) { 1753 return false; 1754 } 1755 } 1756 return true; 1757 } 1758 1759 /** 1760 * Return true if the byte array on the right is a prefix of the byte array on the left. 1761 */ 1762 public static boolean startsWith(byte[] bytes, byte[] prefix) { 1763 return bytes != null && prefix != null && bytes.length >= prefix.length 1764 && LexicographicalComparerHolder.BEST_COMPARER.compareTo(bytes, 0, prefix.length, prefix, 0, 1765 prefix.length) == 0; 1766 } 1767 1768 /** 1769 * Calculate a hash code from a given byte array. 1770 * @param b bytes to hash 1771 * @return Runs {@link WritableComparator#hashBytes(byte[], int)} on the passed in array. This 1772 * method is what {@link org.apache.hadoop.io.Text} use calculating hash code. 1773 */ 1774 public static int hashCode(final byte[] b) { 1775 return hashCode(b, b.length); 1776 } 1777 1778 /** 1779 * Calculate a hash code from a given byte array. 1780 * @param b value 1781 * @param length length of the value 1782 * @return Runs {@link WritableComparator#hashBytes(byte[], int)} on the passed in array. This 1783 * method is what {@link org.apache.hadoop.io.Text} use calculating hash code. 1784 */ 1785 public static int hashCode(final byte[] b, final int length) { 1786 return WritableComparator.hashBytes(b, length); 1787 } 1788 1789 /** 1790 * Calculate a hash code from a given byte array suitable for use as a key in maps. 1791 * @param b bytes to hash 1792 * @return A hash of <code>b</code> as an Integer that can be used as key in Maps. 1793 */ 1794 public static Integer mapKey(final byte[] b) { 1795 return hashCode(b); 1796 } 1797 1798 /** 1799 * Calculate a hash code from a given byte array suitable for use as a key in maps. 1800 * @param b bytes to hash 1801 * @param length length to hash 1802 * @return A hash of <code>b</code> as an Integer that can be used as key in Maps. 1803 */ 1804 public static Integer mapKey(final byte[] b, final int length) { 1805 return hashCode(b, length); 1806 } 1807 1808 /** 1809 * Concatenate byte arrays. 1810 * @param a lower half 1811 * @param b upper half 1812 * @return New array that has a in lower half and b in upper half. 1813 */ 1814 public static byte[] add(final byte[] a, final byte[] b) { 1815 return add(a, b, EMPTY_BYTE_ARRAY); 1816 } 1817 1818 /** 1819 * Concatenate byte arrays. 1820 * @param a first third 1821 * @param b second third 1822 * @param c third third 1823 * @return New array made from a, b and c 1824 */ 1825 public static byte[] add(final byte[] a, final byte[] b, final byte[] c) { 1826 byte[] result = new byte[a.length + b.length + c.length]; 1827 System.arraycopy(a, 0, result, 0, a.length); 1828 System.arraycopy(b, 0, result, a.length, b.length); 1829 System.arraycopy(c, 0, result, a.length + b.length, c.length); 1830 return result; 1831 } 1832 1833 /** 1834 * Concatenate byte arrays. 1835 * @param arrays all the arrays to concatenate together. 1836 * @return New array made from the concatenation of the given arrays. 1837 */ 1838 public static byte[] add(final byte[][] arrays) { 1839 int length = 0; 1840 for (int i = 0; i < arrays.length; i++) { 1841 length += arrays[i].length; 1842 } 1843 byte[] result = new byte[length]; 1844 int index = 0; 1845 for (int i = 0; i < arrays.length; i++) { 1846 System.arraycopy(arrays[i], 0, result, index, arrays[i].length); 1847 index += arrays[i].length; 1848 } 1849 return result; 1850 } 1851 1852 /** 1853 * Make a new byte array from a subset of bytes at the head of another. 1854 * @param a array 1855 * @param length amount of bytes to grab 1856 * @return First <code>length</code> bytes from <code>a</code> 1857 */ 1858 public static byte[] head(final byte[] a, final int length) { 1859 if (a.length < length) { 1860 return null; 1861 } 1862 byte[] result = new byte[length]; 1863 System.arraycopy(a, 0, result, 0, length); 1864 return result; 1865 } 1866 1867 /** 1868 * Make a new byte array from a subset of bytes at the tail of another. 1869 * @param a array 1870 * @param length amount of bytes to snarf 1871 * @return Last <code>length</code> bytes from <code>a</code> 1872 */ 1873 public static byte[] tail(final byte[] a, final int length) { 1874 if (a.length < length) { 1875 return null; 1876 } 1877 byte[] result = new byte[length]; 1878 System.arraycopy(a, a.length - length, result, 0, length); 1879 return result; 1880 } 1881 1882 /** 1883 * Make a new byte array from a subset of bytes at the head of another, zero padded as desired. 1884 * @param a array 1885 * @param length new array size 1886 * @return Value in <code>a</code> plus <code>length</code> prepended 0 bytes 1887 */ 1888 public static byte[] padHead(final byte[] a, final int length) { 1889 byte[] padding = new byte[length]; 1890 for (int i = 0; i < length; i++) { 1891 padding[i] = 0; 1892 } 1893 return add(padding, a); 1894 } 1895 1896 /** 1897 * Make a new byte array from a subset of bytes at the tail of another, zero padded as desired. 1898 * @param a array 1899 * @param length new array size 1900 * @return Value in <code>a</code> plus <code>length</code> appended 0 bytes 1901 */ 1902 public static byte[] padTail(final byte[] a, final int length) { 1903 byte[] padding = new byte[length]; 1904 for (int i = 0; i < length; i++) { 1905 padding[i] = 0; 1906 } 1907 return add(a, padding); 1908 } 1909 1910 /** 1911 * Split passed range. Expensive operation relatively. Uses BigInteger math. Useful splitting 1912 * ranges for MapReduce jobs. 1913 * @param a Beginning of range 1914 * @param b End of range 1915 * @param num Number of times to split range. Pass 1 if you want to split the range in two; i.e. 1916 * one split. 1917 * @return Array of dividing values 1918 */ 1919 public static byte[][] split(final byte[] a, final byte[] b, final int num) { 1920 return split(a, b, false, num); 1921 } 1922 1923 /** 1924 * Split passed range. Expensive operation relatively. Uses BigInteger math. Useful splitting 1925 * ranges for MapReduce jobs. 1926 * @param a Beginning of range 1927 * @param b End of range 1928 * @param inclusive Whether the end of range is prefix-inclusive or is considered an exclusive 1929 * boundary. Automatic splits are generally exclusive and manual splits with an 1930 * explicit range utilize an inclusive end of range. 1931 * @param num Number of times to split range. Pass 1 if you want to split the range in two; 1932 * i.e. one split. 1933 * @return Array of dividing values 1934 */ 1935 public static byte[][] split(final byte[] a, final byte[] b, boolean inclusive, final int num) { 1936 byte[][] ret = new byte[num + 2][]; 1937 int i = 0; 1938 Iterable<byte[]> iter = iterateOnSplits(a, b, inclusive, num); 1939 if (iter == null) return null; 1940 for (byte[] elem : iter) { 1941 ret[i++] = elem; 1942 } 1943 return ret; 1944 } 1945 1946 /** 1947 * Iterate over keys within the passed range, splitting at an [a,b) boundary. 1948 */ 1949 public static Iterable<byte[]> iterateOnSplits(final byte[] a, final byte[] b, final int num) { 1950 return iterateOnSplits(a, b, false, num); 1951 } 1952 1953 /** 1954 * Iterate over keys within the passed range. 1955 */ 1956 public static Iterable<byte[]> iterateOnSplits(final byte[] a, final byte[] b, boolean inclusive, 1957 final int num) { 1958 byte[] aPadded; 1959 byte[] bPadded; 1960 if (a.length < b.length) { 1961 aPadded = padTail(a, b.length - a.length); 1962 bPadded = b; 1963 } else if (b.length < a.length) { 1964 aPadded = a; 1965 bPadded = padTail(b, a.length - b.length); 1966 } else { 1967 aPadded = a; 1968 bPadded = b; 1969 } 1970 if (compareTo(aPadded, bPadded) >= 0) { 1971 throw new IllegalArgumentException("b <= a"); 1972 } 1973 if (num <= 0) { 1974 throw new IllegalArgumentException("num cannot be <= 0"); 1975 } 1976 byte[] prependHeader = { 1, 0 }; 1977 final BigInteger startBI = new BigInteger(add(prependHeader, aPadded)); 1978 final BigInteger stopBI = new BigInteger(add(prependHeader, bPadded)); 1979 BigInteger diffBI = stopBI.subtract(startBI); 1980 if (inclusive) { 1981 diffBI = diffBI.add(BigInteger.ONE); 1982 } 1983 final BigInteger splitsBI = BigInteger.valueOf(num + 1); 1984 // when diffBI < splitBI, use an additional byte to increase diffBI 1985 if (diffBI.compareTo(splitsBI) < 0) { 1986 byte[] aPaddedAdditional = new byte[aPadded.length + 1]; 1987 byte[] bPaddedAdditional = new byte[bPadded.length + 1]; 1988 for (int i = 0; i < aPadded.length; i++) { 1989 aPaddedAdditional[i] = aPadded[i]; 1990 } 1991 for (int j = 0; j < bPadded.length; j++) { 1992 bPaddedAdditional[j] = bPadded[j]; 1993 } 1994 aPaddedAdditional[aPadded.length] = 0; 1995 bPaddedAdditional[bPadded.length] = 0; 1996 return iterateOnSplits(aPaddedAdditional, bPaddedAdditional, inclusive, num); 1997 } 1998 final BigInteger intervalBI; 1999 try { 2000 intervalBI = diffBI.divide(splitsBI); 2001 } catch (Exception e) { 2002 LOG.error("Exception caught during division", e); 2003 return null; 2004 } 2005 2006 final Iterator<byte[]> iterator = new Iterator<byte[]>() { 2007 private int i = -1; 2008 2009 @Override 2010 public boolean hasNext() { 2011 return i < num + 1; 2012 } 2013 2014 @Override 2015 public byte[] next() { 2016 i++; 2017 if (i == 0) return a; 2018 if (i == num + 1) return b; 2019 2020 BigInteger curBI = startBI.add(intervalBI.multiply(BigInteger.valueOf(i))); 2021 byte[] padded = curBI.toByteArray(); 2022 if (padded[1] == 0) padded = tail(padded, padded.length - 2); 2023 else padded = tail(padded, padded.length - 1); 2024 return padded; 2025 } 2026 2027 @Override 2028 public void remove() { 2029 throw new UnsupportedOperationException(); 2030 } 2031 2032 }; 2033 2034 return new Iterable<byte[]>() { 2035 @Override 2036 public Iterator<byte[]> iterator() { 2037 return iterator; 2038 } 2039 }; 2040 } 2041 2042 /** 2043 * Calculate the hash code for a given range of bytes. 2044 * @param bytes array to hash 2045 * @param offset offset to start from 2046 * @param length length to hash 2047 */ 2048 public static int hashCode(byte[] bytes, int offset, int length) { 2049 int hash = 1; 2050 for (int i = offset; i < offset + length; i++) 2051 hash = (31 * hash) + bytes[i]; 2052 return hash; 2053 } 2054 2055 /** 2056 * Create an array of byte[] given an array of String. 2057 * @param t operands 2058 * @return Array of byte arrays made from passed array of Text 2059 */ 2060 public static byte[][] toByteArrays(final String[] t) { 2061 byte[][] result = new byte[t.length][]; 2062 for (int i = 0; i < t.length; i++) { 2063 result[i] = Bytes.toBytes(t[i]); 2064 } 2065 return result; 2066 } 2067 2068 /** 2069 * Create an array of byte[] given an array of String. 2070 * @param t operands 2071 * @return Array of binary byte arrays made from passed array of binary strings 2072 */ 2073 public static byte[][] toBinaryByteArrays(final String[] t) { 2074 byte[][] result = new byte[t.length][]; 2075 for (int i = 0; i < t.length; i++) { 2076 result[i] = Bytes.toBytesBinary(t[i]); 2077 } 2078 return result; 2079 } 2080 2081 /** 2082 * Create a byte[][] where first and only entry is <code>column</code> 2083 * @param column operand 2084 * @return A byte array of a byte array where first and only entry is <code>column</code> 2085 */ 2086 public static byte[][] toByteArrays(final String column) { 2087 return toByteArrays(toBytes(column)); 2088 } 2089 2090 /** 2091 * Create a byte[][] where first and only entry is <code>column</code> 2092 * @param column operand 2093 * @return A byte array of a byte array where first and only entry is <code>column</code> 2094 */ 2095 public static byte[][] toByteArrays(final byte[] column) { 2096 byte[][] result = new byte[1][]; 2097 result[0] = column; 2098 return result; 2099 } 2100 2101 /** 2102 * Binary search for keys in indexes. 2103 * @param arr array of byte arrays to search for 2104 * @param key the key you want to find 2105 * @param offset the offset in the key you want to find 2106 * @param length the length of the key 2107 * @param comparator a comparator to compare. 2108 * @return zero-based index of the key, if the key is present in the array. Otherwise, a value -(i 2109 * + 1) such that the key is between arr[i - 1] and arr[i] non-inclusively, where i is in 2110 * [0, i], if we define arr[-1] = -Inf and arr[N] = Inf for an N-element array. The above 2111 * means that this function can return 2N + 1 different values ranging from -(N + 1) to N 2112 * - 1. 2113 * @deprecated since 2.0.0 and will be removed in 3.0.0. Use 2114 * {@link #binarySearch(byte[][], byte[], int, int)} instead. 2115 * @see #binarySearch(byte[][], byte[], int, int) 2116 * @see <a href="https://issues.apache.org/jira/browse/HBASE-13450">HBASE-13450</a> 2117 */ 2118 @Deprecated 2119 public static int binarySearch(byte[][] arr, byte[] key, int offset, int length, 2120 RawComparator<?> comparator) { 2121 return binarySearch(arr, key, offset, length); 2122 } 2123 2124 /** 2125 * Binary search for keys in indexes using Bytes.BYTES_RAWCOMPARATOR. 2126 * @param arr array of byte arrays to search for 2127 * @param key the key you want to find 2128 * @param offset the offset in the key you want to find 2129 * @param length the length of the key 2130 * @return zero-based index of the key, if the key is present in the array. Otherwise, a value -(i 2131 * + 1) such that the key is between arr[i - 1] and arr[i] non-inclusively, where i is in 2132 * [0, i], if we define arr[-1] = -Inf and arr[N] = Inf for an N-element array. The above 2133 * means that this function can return 2N + 1 different values ranging from -(N + 1) to N 2134 * - 1. 2135 */ 2136 public static int binarySearch(byte[][] arr, byte[] key, int offset, int length) { 2137 int low = 0; 2138 int high = arr.length - 1; 2139 2140 while (low <= high) { 2141 int mid = low + ((high - low) >> 1); 2142 // we have to compare in this order, because the comparator order 2143 // has special logic when the 'left side' is a special key. 2144 int cmp = 2145 Bytes.BYTES_RAWCOMPARATOR.compare(key, offset, length, arr[mid], 0, arr[mid].length); 2146 // key lives above the midpoint 2147 if (cmp > 0) low = mid + 1; 2148 // key lives below the midpoint 2149 else if (cmp < 0) high = mid - 1; 2150 // BAM. how often does this really happen? 2151 else return mid; 2152 } 2153 return -(low + 1); 2154 } 2155 2156 /** 2157 * Binary search for keys in indexes. 2158 * @param arr array of byte arrays to search for 2159 * @param key the key you want to find 2160 * @param comparator a comparator to compare. 2161 * @return zero-based index of the key, if the key is present in the array. Otherwise, a value -(i 2162 * + 1) such that the key is between arr[i - 1] and arr[i] non-inclusively, where i is in 2163 * [0, i], if we define arr[-1] = -Inf and arr[N] = Inf for an N-element array. The above 2164 * means that this function can return 2N + 1 different values ranging from -(N + 1) to N 2165 * - 1. 2166 * @return the index of the block 2167 * @deprecated since 2.0.0 and will be removed in 3.0.0. Use 2168 * {@link #binarySearch(Cell[], Cell, CellComparator)} instead. 2169 * @see #binarySearch(Cell[], Cell, CellComparator) 2170 * @see <a href="https://issues.apache.org/jira/browse/HBASE-13450">HBASE-13450</a> 2171 */ 2172 @Deprecated 2173 public static int binarySearch(byte[][] arr, Cell key, RawComparator<Cell> comparator) { 2174 int low = 0; 2175 int high = arr.length - 1; 2176 KeyValue.KeyOnlyKeyValue r = new KeyValue.KeyOnlyKeyValue(); 2177 while (low <= high) { 2178 int mid = low + ((high - low) >> 1); 2179 // we have to compare in this order, because the comparator order 2180 // has special logic when the 'left side' is a special key. 2181 r.setKey(arr[mid], 0, arr[mid].length); 2182 int cmp = comparator.compare(key, r); 2183 // key lives above the midpoint 2184 if (cmp > 0) low = mid + 1; 2185 // key lives below the midpoint 2186 else if (cmp < 0) high = mid - 1; 2187 // BAM. how often does this really happen? 2188 else return mid; 2189 } 2190 return -(low + 1); 2191 } 2192 2193 /** 2194 * Binary search for keys in indexes. 2195 * @param arr array of byte arrays to search for 2196 * @param key the key you want to find 2197 * @param comparator a comparator to compare. 2198 * @return zero-based index of the key, if the key is present in the array. Otherwise, a value -(i 2199 * + 1) such that the key is between arr[i - 1] and arr[i] non-inclusively, where i is in 2200 * [0, i], if we define arr[-1] = -Inf and arr[N] = Inf for an N-element array. The above 2201 * means that this function can return 2N + 1 different values ranging from -(N + 1) to N 2202 * - 1. 2203 * @return the index of the block 2204 */ 2205 public static int binarySearch(Cell[] arr, Cell key, CellComparator comparator) { 2206 int low = 0; 2207 int high = arr.length - 1; 2208 while (low <= high) { 2209 int mid = low + ((high - low) >> 1); 2210 // we have to compare in this order, because the comparator order 2211 // has special logic when the 'left side' is a special key. 2212 int cmp = comparator.compare(key, arr[mid]); 2213 // key lives above the midpoint 2214 if (cmp > 0) low = mid + 1; 2215 // key lives below the midpoint 2216 else if (cmp < 0) high = mid - 1; 2217 // BAM. how often does this really happen? 2218 else return mid; 2219 } 2220 return -(low + 1); 2221 } 2222 2223 /** 2224 * Bytewise binary increment/deincrement of long contained in byte array on given amount. 2225 * @param value - array of bytes containing long (length <= SIZEOF_LONG) 2226 * @param amount value will be incremented on (deincremented if negative) 2227 * @return array of bytes containing incremented long (length == SIZEOF_LONG) 2228 */ 2229 public static byte[] incrementBytes(byte[] value, long amount) { 2230 byte[] val = value; 2231 if (val.length < SIZEOF_LONG) { 2232 // Hopefully this doesn't happen too often. 2233 byte[] newvalue; 2234 if (val[0] < 0) { 2235 newvalue = new byte[] { -1, -1, -1, -1, -1, -1, -1, -1 }; 2236 } else { 2237 newvalue = new byte[SIZEOF_LONG]; 2238 } 2239 System.arraycopy(val, 0, newvalue, newvalue.length - val.length, val.length); 2240 val = newvalue; 2241 } else if (val.length > SIZEOF_LONG) { 2242 throw new IllegalArgumentException("Increment Bytes - value too big: " + val.length); 2243 } 2244 if (amount == 0) return val; 2245 if (val[0] < 0) { 2246 return binaryIncrementNeg(val, amount); 2247 } 2248 return binaryIncrementPos(val, amount); 2249 } 2250 2251 /* increment/deincrement for positive value */ 2252 private static byte[] binaryIncrementPos(byte[] value, long amount) { 2253 long amo = amount; 2254 int sign = 1; 2255 if (amount < 0) { 2256 amo = -amount; 2257 sign = -1; 2258 } 2259 for (int i = 0; i < value.length; i++) { 2260 int cur = ((int) amo % 256) * sign; 2261 amo = (amo >> 8); 2262 int val = value[value.length - i - 1] & 0x0ff; 2263 int total = val + cur; 2264 if (total > 255) { 2265 amo += sign; 2266 total %= 256; 2267 } else if (total < 0) { 2268 amo -= sign; 2269 } 2270 value[value.length - i - 1] = (byte) total; 2271 if (amo == 0) return value; 2272 } 2273 return value; 2274 } 2275 2276 /* increment/deincrement for negative value */ 2277 private static byte[] binaryIncrementNeg(byte[] value, long amount) { 2278 long amo = amount; 2279 int sign = 1; 2280 if (amount < 0) { 2281 amo = -amount; 2282 sign = -1; 2283 } 2284 for (int i = 0; i < value.length; i++) { 2285 int cur = ((int) amo % 256) * sign; 2286 amo = (amo >> 8); 2287 int val = (~value[value.length - i - 1] & 0x0ff) + 1; 2288 int total = cur - val; 2289 if (total >= 0) { 2290 amo += sign; 2291 } else if (total < -256) { 2292 amo -= sign; 2293 total %= 256; 2294 } 2295 value[value.length - i - 1] = (byte) total; 2296 if (amo == 0) return value; 2297 } 2298 return value; 2299 } 2300 2301 /** 2302 * Writes a string as a fixed-size field, padded with zeros. 2303 */ 2304 public static void writeStringFixedSize(final DataOutput out, String s, int size) 2305 throws IOException { 2306 byte[] b = toBytes(s); 2307 if (b.length > size) { 2308 throw new IOException("Trying to write " + b.length + " bytes (" + toStringBinary(b) 2309 + ") into a field of length " + size); 2310 } 2311 2312 out.writeBytes(s); 2313 for (int i = 0; i < size - s.length(); ++i) 2314 out.writeByte(0); 2315 } 2316 2317 /** 2318 * Reads a fixed-size field and interprets it as a string padded with zeros. 2319 */ 2320 public static String readStringFixedSize(final DataInput in, int size) throws IOException { 2321 byte[] b = new byte[size]; 2322 in.readFully(b); 2323 int n = b.length; 2324 while (n > 0 && b[n - 1] == 0) 2325 --n; 2326 2327 return toString(b, 0, n); 2328 } 2329 2330 /** 2331 * Copy the byte array given in parameter and return an instance of a new byte array with the same 2332 * length and the same content. 2333 * @param bytes the byte array to duplicate 2334 * @return a copy of the given byte array 2335 */ 2336 public static byte[] copy(byte[] bytes) { 2337 if (bytes == null) return null; 2338 byte[] result = new byte[bytes.length]; 2339 System.arraycopy(bytes, 0, result, 0, bytes.length); 2340 return result; 2341 } 2342 2343 /** 2344 * Copy the byte array given in parameter and return an instance of a new byte array with the same 2345 * length and the same content. 2346 * @param bytes the byte array to copy from 2347 * @return a copy of the given designated byte array 2348 */ 2349 public static byte[] copy(byte[] bytes, final int offset, final int length) { 2350 if (bytes == null) return null; 2351 byte[] result = new byte[length]; 2352 System.arraycopy(bytes, offset, result, 0, length); 2353 return result; 2354 } 2355 2356 /** 2357 * Search sorted array "a" for byte "key". I can't remember if I wrote this or copied it from 2358 * somewhere. (mcorgan) 2359 * @param a Array to search. Entries must be sorted and unique. 2360 * @param fromIndex First index inclusive of "a" to include in the search. 2361 * @param toIndex Last index exclusive of "a" to include in the search. 2362 * @param key The byte to search for. 2363 * @return The index of key if found. If not found, return -(index + 1), where negative indicates 2364 * "not found" and the "index + 1" handles the "-0" case. 2365 */ 2366 public static int unsignedBinarySearch(byte[] a, int fromIndex, int toIndex, byte key) { 2367 int unsignedKey = key & 0xff; 2368 int low = fromIndex; 2369 int high = toIndex - 1; 2370 2371 while (low <= high) { 2372 int mid = low + ((high - low) >> 1); 2373 int midVal = a[mid] & 0xff; 2374 2375 if (midVal < unsignedKey) { 2376 low = mid + 1; 2377 } else if (midVal > unsignedKey) { 2378 high = mid - 1; 2379 } else { 2380 return mid; // key found 2381 } 2382 } 2383 return -(low + 1); // key not found. 2384 } 2385 2386 /** 2387 * Treat the byte[] as an unsigned series of bytes, most significant bits first. Start by adding 1 2388 * to the rightmost bit/byte and carry over all overflows to the more significant bits/bytes. 2389 * @param input The byte[] to increment. 2390 * @return The incremented copy of "in". May be same length or 1 byte longer. 2391 */ 2392 public static byte[] unsignedCopyAndIncrement(final byte[] input) { 2393 byte[] copy = copy(input); 2394 if (copy == null) { 2395 throw new IllegalArgumentException("cannot increment null array"); 2396 } 2397 for (int i = copy.length - 1; i >= 0; --i) { 2398 if (copy[i] == -1) {// -1 is all 1-bits, which is the unsigned maximum 2399 copy[i] = 0; 2400 } else { 2401 ++copy[i]; 2402 return copy; 2403 } 2404 } 2405 // we maxed out the array 2406 byte[] out = new byte[copy.length + 1]; 2407 out[0] = 1; 2408 System.arraycopy(copy, 0, out, 1, copy.length); 2409 return out; 2410 } 2411 2412 public static boolean equals(List<byte[]> a, List<byte[]> b) { 2413 if (a == null) { 2414 if (b == null) { 2415 return true; 2416 } 2417 return false; 2418 } 2419 if (b == null) { 2420 return false; 2421 } 2422 if (a.size() != b.size()) { 2423 return false; 2424 } 2425 for (int i = 0; i < a.size(); ++i) { 2426 if (!Bytes.equals(a.get(i), b.get(i))) { 2427 return false; 2428 } 2429 } 2430 return true; 2431 } 2432 2433 public static boolean isSorted(Collection<byte[]> arrays) { 2434 if (!CollectionUtils.isEmpty(arrays)) { 2435 byte[] previous = new byte[0]; 2436 for (byte[] array : arrays) { 2437 if (Bytes.compareTo(previous, array) > 0) { 2438 return false; 2439 } 2440 previous = array; 2441 } 2442 } 2443 return true; 2444 } 2445 2446 public static List<byte[]> getUtf8ByteArrays(List<String> strings) { 2447 if (CollectionUtils.isEmpty(strings)) { 2448 return Collections.emptyList(); 2449 } 2450 List<byte[]> byteArrays = new ArrayList<>(strings.size()); 2451 strings.forEach(s -> byteArrays.add(Bytes.toBytes(s))); 2452 return byteArrays; 2453 } 2454 2455 /** 2456 * Returns the index of the first appearance of the value {@code target} in {@code array}. 2457 * @param array an array of {@code byte} values, possibly empty 2458 * @param target a primitive {@code byte} value 2459 * @return the least index {@code i} for which {@code array[i] == target}, or {@code -1} if no 2460 * such index exists. 2461 */ 2462 public static int indexOf(byte[] array, byte target) { 2463 for (int i = 0; i < array.length; i++) { 2464 if (array[i] == target) { 2465 return i; 2466 } 2467 } 2468 return -1; 2469 } 2470 2471 /** 2472 * Returns the start position of the first occurrence of the specified {@code 2473 * target} within {@code array}, or {@code -1} if there is no such occurrence. 2474 * <p> 2475 * More formally, returns the lowest index {@code i} such that {@code 2476 * java.util.Arrays.copyOfRange(array, i, i + target.length)} contains exactly the same elements 2477 * as {@code target}. 2478 * @param array the array to search for the sequence {@code target} 2479 * @param target the array to search for as a sub-sequence of {@code array} 2480 */ 2481 public static int indexOf(byte[] array, byte[] target) { 2482 checkNotNull(array, "array"); 2483 checkNotNull(target, "target"); 2484 if (target.length == 0) { 2485 return 0; 2486 } 2487 2488 outer: for (int i = 0; i < array.length - target.length + 1; i++) { 2489 for (int j = 0; j < target.length; j++) { 2490 if (array[i + j] != target[j]) { 2491 continue outer; 2492 } 2493 } 2494 return i; 2495 } 2496 return -1; 2497 } 2498 2499 /** 2500 * Return true if target is present as an element anywhere in the given array. 2501 * @param array an array of {@code byte} values, possibly empty 2502 * @param target a primitive {@code byte} value 2503 * @return {@code true} if {@code target} is present as an element anywhere in {@code array}. 2504 */ 2505 public static boolean contains(byte[] array, byte target) { 2506 return indexOf(array, target) > -1; 2507 } 2508 2509 /** 2510 * Return true if target is present as an element anywhere in the given array. 2511 * @param array an array of {@code byte} values, possibly empty 2512 * @param target an array of {@code byte} 2513 * @return {@code true} if {@code target} is present anywhere in {@code array} 2514 */ 2515 public static boolean contains(byte[] array, byte[] target) { 2516 return indexOf(array, target) > -1; 2517 } 2518 2519 /** 2520 * Fill given array with zeros. 2521 * @param b array which needs to be filled with zeros 2522 */ 2523 public static void zero(byte[] b) { 2524 zero(b, 0, b.length); 2525 } 2526 2527 /** 2528 * Fill given array with zeros at the specified position. 2529 */ 2530 public static void zero(byte[] b, int offset, int length) { 2531 checkPositionIndex(offset, b.length, "offset"); 2532 checkArgument(length > 0, "length must be greater than 0"); 2533 checkPositionIndex(offset + length, b.length, "offset + length"); 2534 Arrays.fill(b, offset, offset + length, (byte) 0); 2535 } 2536 2537 // Pseudorandom random number generator, do not use SecureRandom here 2538 private static final Random RNG = new Random(); 2539 2540 /** 2541 * Fill given array with random bytes. 2542 * @param b array which needs to be filled with random bytes 2543 * <p> 2544 * If you want random bytes generated by a strong source of randomness use 2545 * {@link Bytes#secureRandom(byte[])}. 2546 * @param b array which needs to be filled with random bytes 2547 */ 2548 public static void random(byte[] b) { 2549 RNG.nextBytes(b); 2550 } 2551 2552 /** 2553 * Fill given array with random bytes at the specified position. 2554 * <p> 2555 * If you want random bytes generated by a strong source of randomness use 2556 * {@link Bytes#secureRandom(byte[], int, int)}. 2557 * @param b array which needs to be filled with random bytes 2558 * @param offset staring offset in array 2559 * @param length number of bytes to fill 2560 */ 2561 public static void random(byte[] b, int offset, int length) { 2562 checkPositionIndex(offset, b.length, "offset"); 2563 checkArgument(length > 0, "length must be greater than 0"); 2564 checkPositionIndex(offset + length, b.length, "offset + length"); 2565 byte[] buf = new byte[length]; 2566 RNG.nextBytes(buf); 2567 System.arraycopy(buf, 0, b, offset, length); 2568 } 2569 2570 // Bytes.secureRandom may be used to create key material. 2571 private static final SecureRandom SECURE_RNG = new SecureRandom(); 2572 2573 /** 2574 * Fill given array with random bytes using a strong random number generator. 2575 * @param b array which needs to be filled with random bytes 2576 */ 2577 public static void secureRandom(byte[] b) { 2578 SECURE_RNG.nextBytes(b); 2579 } 2580 2581 /** 2582 * Fill given array with random bytes at the specified position using a strong random number 2583 * generator. 2584 * @param b array which needs to be filled with random bytes 2585 * @param offset staring offset in array 2586 * @param length number of bytes to fill 2587 */ 2588 public static void secureRandom(byte[] b, int offset, int length) { 2589 checkPositionIndex(offset, b.length, "offset"); 2590 checkArgument(length > 0, "length must be greater than 0"); 2591 checkPositionIndex(offset + length, b.length, "offset + length"); 2592 byte[] buf = new byte[length]; 2593 SECURE_RNG.nextBytes(buf); 2594 System.arraycopy(buf, 0, b, offset, length); 2595 } 2596 2597 /** 2598 * Create a max byte array with the specified max byte count 2599 * @param maxByteCount the length of returned byte array 2600 * @return the created max byte array 2601 */ 2602 public static byte[] createMaxByteArray(int maxByteCount) { 2603 byte[] maxByteArray = new byte[maxByteCount]; 2604 for (int i = 0; i < maxByteArray.length; i++) { 2605 maxByteArray[i] = (byte) 0xff; 2606 } 2607 return maxByteArray; 2608 } 2609 2610 /** 2611 * Create a byte array which is multiple given bytes 2612 * @return byte array 2613 */ 2614 public static byte[] multiple(byte[] srcBytes, int multiNum) { 2615 if (multiNum <= 0) { 2616 return new byte[0]; 2617 } 2618 byte[] result = new byte[srcBytes.length * multiNum]; 2619 for (int i = 0; i < multiNum; i++) { 2620 System.arraycopy(srcBytes, 0, result, i * srcBytes.length, srcBytes.length); 2621 } 2622 return result; 2623 } 2624 2625 private static final char[] HEX_CHARS = 2626 { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; 2627 2628 /** 2629 * Convert a byte range into a hex string 2630 */ 2631 public static String toHex(byte[] b, int offset, int length) { 2632 checkArgument(length <= Integer.MAX_VALUE / 2); 2633 int numChars = length * 2; 2634 char[] ch = new char[numChars]; 2635 for (int i = 0; i < numChars; i += 2) { 2636 byte d = b[offset + i / 2]; 2637 ch[i] = HEX_CHARS[(d >> 4) & 0x0F]; 2638 ch[i + 1] = HEX_CHARS[d & 0x0F]; 2639 } 2640 return new String(ch); 2641 } 2642 2643 /** 2644 * Convert a byte array into a hex string 2645 */ 2646 public static String toHex(byte[] b) { 2647 return toHex(b, 0, b.length); 2648 } 2649 2650 private static int hexCharToNibble(char ch) { 2651 if (ch <= '9' && ch >= '0') { 2652 return ch - '0'; 2653 } else if (ch >= 'a' && ch <= 'f') { 2654 return ch - 'a' + 10; 2655 } else if (ch >= 'A' && ch <= 'F') { 2656 return ch - 'A' + 10; 2657 } 2658 throw new IllegalArgumentException("Invalid hex char: " + ch); 2659 } 2660 2661 private static byte hexCharsToByte(char c1, char c2) { 2662 return (byte) ((hexCharToNibble(c1) << 4) | hexCharToNibble(c2)); 2663 } 2664 2665 /** 2666 * Create a byte array from a string of hash digits. The length of the string must be a multiple 2667 * of 2 2668 */ 2669 public static byte[] fromHex(String hex) { 2670 checkArgument(hex.length() % 2 == 0, "length must be a multiple of 2"); 2671 int len = hex.length(); 2672 byte[] b = new byte[len / 2]; 2673 for (int i = 0; i < len; i += 2) { 2674 b[i / 2] = hexCharsToByte(hex.charAt(i), hex.charAt(i + 1)); 2675 } 2676 return b; 2677 } 2678 2679 /** 2680 * Find index of passed delimiter. 2681 * @return Index of delimiter having started from start of <code>b</code> moving rightward. 2682 */ 2683 public static int searchDelimiterIndex(final byte[] b, int offset, final int length, 2684 final int delimiter) { 2685 if (b == null) { 2686 throw new IllegalArgumentException("Passed buffer is null"); 2687 } 2688 int result = -1; 2689 for (int i = offset; i < length + offset; i++) { 2690 if (b[i] == delimiter) { 2691 result = i; 2692 break; 2693 } 2694 } 2695 return result; 2696 } 2697 2698 /** 2699 * Find index of passed delimiter walking from end of buffer backwards. 2700 * @return Index of delimiter 2701 */ 2702 public static int searchDelimiterIndexInReverse(final byte[] b, final int offset, 2703 final int length, final int delimiter) { 2704 if (b == null) { 2705 throw new IllegalArgumentException("Passed buffer is null"); 2706 } 2707 int result = -1; 2708 for (int i = (offset + length) - 1; i >= offset; i--) { 2709 if (b[i] == delimiter) { 2710 result = i; 2711 break; 2712 } 2713 } 2714 return result; 2715 } 2716 2717 public static int findCommonPrefix(byte[] left, byte[] right, int leftLength, int rightLength, 2718 int leftOffset, int rightOffset) { 2719 return CommonPrefixerHolder.BEST_COMMON_PREFIXER.findCommonPrefix(left, leftOffset, leftLength, 2720 right, rightOffset, rightLength); 2721 } 2722}