001/* 002 * Licensed to the Apache Software Foundation (ASF) under one 003 * or more contributor license agreements. See the NOTICE file 004 * distributed with this work for additional information 005 * regarding copyright ownership. The ASF licenses this file 006 * to you under the Apache License, Version 2.0 (the 007 * "License"); you may not use this file except in compliance 008 * with the License. You may obtain a copy of the License at 009 * 010 * http://www.apache.org/licenses/LICENSE-2.0 011 * 012 * Unless required by applicable law or agreed to in writing, software 013 * distributed under the License is distributed on an "AS IS" BASIS, 014 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 015 * See the License for the specific language governing permissions and 016 * limitations under the License. 017 */ 018package org.apache.hadoop.hbase.util; 019 020import static org.apache.hadoop.hbase.util.Order.ASCENDING; 021import static org.apache.hadoop.hbase.util.Order.DESCENDING; 022 023import java.math.BigDecimal; 024import java.math.MathContext; 025import java.math.RoundingMode; 026import java.nio.charset.Charset; 027import org.apache.yetus.audience.InterfaceAudience; 028 029/** 030 * Utility class that handles ordered byte arrays. That is, unlike {@link Bytes}, these methods 031 * produce byte arrays which maintain the sort order of the original values. 032 * <h3>Encoding Format summary</h3> 033 * <p> 034 * Each value is encoded as one or more bytes. The first byte of the encoding, its meaning, and a 035 * terse description of the bytes that follow is given by the following table: 036 * </p> 037 * <table summary="Encodings"> 038 * <tr> 039 * <th>Content Type</th> 040 * <th>Encoding</th> 041 * </tr> 042 * <tr> 043 * <td>NULL</td> 044 * <td>0x05</td> 045 * </tr> 046 * <tr> 047 * <td>negative infinity</td> 048 * <td>0x07</td> 049 * </tr> 050 * <tr> 051 * <td>negative large</td> 052 * <td>0x08, ~E, ~M</td> 053 * </tr> 054 * <tr> 055 * <td>negative medium</td> 056 * <td>0x13-E, ~M</td> 057 * </tr> 058 * <tr> 059 * <td>negative small</td> 060 * <td>0x14, -E, ~M</td> 061 * </tr> 062 * <tr> 063 * <td>zero</td> 064 * <td>0x15</td> 065 * </tr> 066 * <tr> 067 * <td>positive small</td> 068 * <td>0x16, ~-E, M</td> 069 * </tr> 070 * <tr> 071 * <td>positive medium</td> 072 * <td>0x17+E, M</td> 073 * </tr> 074 * <tr> 075 * <td>positive large</td> 076 * <td>0x22, E, M</td> 077 * </tr> 078 * <tr> 079 * <td>positive infinity</td> 080 * <td>0x23</td> 081 * </tr> 082 * <tr> 083 * <td>NaN</td> 084 * <td>0x25</td> 085 * </tr> 086 * <tr> 087 * <td>fixed-length 32-bit integer</td> 088 * <td>0x27, I</td> 089 * </tr> 090 * <tr> 091 * <td>fixed-length 64-bit integer</td> 092 * <td>0x28, I</td> 093 * </tr> 094 * <tr> 095 * <td>fixed-length 8-bit integer</td> 096 * <td>0x29</td> 097 * </tr> 098 * <tr> 099 * <td>fixed-length 16-bit integer</td> 100 * <td>0x2a</td> 101 * </tr> 102 * <tr> 103 * <td>fixed-length 32-bit float</td> 104 * <td>0x30, F</td> 105 * </tr> 106 * <tr> 107 * <td>fixed-length 64-bit float</td> 108 * <td>0x31, F</td> 109 * </tr> 110 * <tr> 111 * <td>TEXT</td> 112 * <td>0x33, T</td> 113 * </tr> 114 * <tr> 115 * <td>variable length BLOB</td> 116 * <td>0x35, B</td> 117 * </tr> 118 * <tr> 119 * <td>byte-for-byte BLOB</td> 120 * <td>0x36, X</td> 121 * </tr> 122 * </table> 123 * <h3>Null Encoding</h3> 124 * <p> 125 * Each value that is a NULL encodes as a single byte of 0x05. Since every other value encoding 126 * begins with a byte greater than 0x05, this forces NULL values to sort first. 127 * </p> 128 * <h3>Text Encoding</h3> 129 * <p> 130 * Each text value begins with a single byte of 0x33 and ends with a single byte of 0x00. There are 131 * zero or more intervening bytes that encode the text value. The intervening bytes are chosen so 132 * that the encoding will sort in the desired collating order. The intervening bytes may not contain 133 * a 0x00 character; the only 0x00 byte allowed in a text encoding is the final byte. 134 * </p> 135 * <p> 136 * The text encoding ends in 0x00 in order to ensure that when there are two strings where one is a 137 * prefix of the other that the shorter string will sort first. 138 * </p> 139 * <h3>Binary Encoding</h3> 140 * <p> 141 * There are two encoding strategies for binary fields, referred to as "BlobVar" and "BlobCopy". 142 * BlobVar is less efficient in both space and encoding time. It has no limitations on the range of 143 * encoded values. BlobCopy is a byte-for-byte copy of the input data followed by a termination 144 * byte. It is extremely fast to encode and decode. It carries the restriction of not allowing a 145 * 0x00 value in the input byte[] as this value is used as the termination byte. 146 * </p> 147 * <h4>BlobVar</h4> 148 * <p> 149 * "BlobVar" encodes the input byte[] in a manner similar to a variable length integer encoding. As 150 * with the other {@code OrderedBytes} encodings, the first encoded byte is used to indicate what 151 * kind of value follows. This header byte is 0x37 for BlobVar encoded values. As with the 152 * traditional varint encoding, the most significant bit of each subsequent encoded {@code byte} is 153 * used as a continuation marker. The 7 remaining bits contain the 7 most significant bits of the 154 * first unencoded byte. The next encoded byte starts with a continuation marker in the MSB. The 155 * least significant bit from the first unencoded byte follows, and the remaining 6 bits contain the 156 * 6 MSBs of the second unencoded byte. The encoding continues, encoding 7 bytes on to 8 encoded 157 * bytes. The MSB of the final encoded byte contains a termination marker rather than a continuation 158 * marker, and any remaining bits from the final input byte. Any trailing bits in the final encoded 159 * byte are zeros. 160 * </p> 161 * <h4>BlobCopy</h4> 162 * <p> 163 * "BlobCopy" is a simple byte-for-byte copy of the input data. It uses 0x38 as the header byte, and 164 * is terminated by 0x00 in the DESCENDING case. This alternative encoding is faster and more 165 * space-efficient, but it cannot accept values containing a 0x00 byte in DESCENDING order. 166 * </p> 167 * <h3>Variable-length Numeric Encoding</h3> 168 * <p> 169 * Numeric values must be coded so as to sort in numeric order. We assume that numeric values can be 170 * both integer and floating point values. Clients must be careful to use inspection methods for 171 * encoded values (such as {@link #isNumericInfinite(PositionedByteRange)} and 172 * {@link #isNumericNaN(PositionedByteRange)} to protect against decoding values into object which 173 * do not support these numeric concepts (such as {@link Long} and {@link BigDecimal}). 174 * </p> 175 * <p> 176 * Simplest cases first: If the numeric value is a NaN, then the encoding is a single byte of 0x25. 177 * This causes NaN values to sort after every other numeric value. 178 * </p> 179 * <p> 180 * If the numeric value is a negative infinity then the encoding is a single byte of 0x07. Since 181 * every other numeric value except NaN has a larger initial byte, this encoding ensures that 182 * negative infinity will sort prior to every other numeric value other than NaN. 183 * </p> 184 * <p> 185 * If the numeric value is a positive infinity then the encoding is a single byte of 0x23. Every 186 * other numeric value encoding begins with a smaller byte, ensuring that positive infinity always 187 * sorts last among numeric values. 0x23 is also smaller than 0x33, the initial byte of a text 188 * value, ensuring that every numeric value sorts before every text value. 189 * </p> 190 * <p> 191 * If the numeric value is exactly zero then it is encoded as a single byte of 0x15. Finite negative 192 * values will have initial bytes of 0x08 through 0x14 and finite positive values will have initial 193 * bytes of 0x16 through 0x22. 194 * </p> 195 * <p> 196 * For all numeric values, we compute a mantissa M and an exponent E. The mantissa is a base-100 197 * representation of the value. The exponent E determines where to put the decimal point. 198 * </p> 199 * <p> 200 * Each centimal digit of the mantissa is stored in a byte. If the value of the centimal digit is X 201 * (hence X≥0 and X≤99) then the byte value will be 2*X+1 for every byte of the mantissa, 202 * except for the last byte which will be 2*X+0. The mantissa must be the minimum number of bytes 203 * necessary to represent the value; trailing X==0 digits are omitted. This means that the mantissa 204 * will never contain a byte with the value 0x00. 205 * </p> 206 * <p> 207 * If we assume all digits of the mantissa occur to the right of the decimal point, then the 208 * exponent E is the power of one hundred by which one must multiply the mantissa to recover the 209 * original value. 210 * </p> 211 * <p> 212 * Values are classified as large, medium, or small according to the value of E. If E is 11 or more, 213 * the value is large. For E between 0 and 10, the value is medium. For E less than zero, the value 214 * is small. 215 * </p> 216 * <p> 217 * Large positive values are encoded as a single byte 0x22 followed by E as a varint and then M. 218 * Medium positive values are a single byte of 0x17+E followed by M. Small positive values are 219 * encoded as a single byte 0x16 followed by the ones-complement of the varint for -E followed by M. 220 * </p> 221 * <p> 222 * Small negative values are encoded as a single byte 0x14 followed by -E as a varint and then the 223 * ones-complement of M. Medium negative values are encoded as a byte 0x13-E followed by the 224 * ones-complement of M. Large negative values consist of the single byte 0x08 followed by the 225 * ones-complement of the varint encoding of E followed by the ones-complement of M. 226 * </p> 227 * <h3>Fixed-length Integer Encoding</h3> 228 * <p> 229 * All 4-byte integers are serialized to a 5-byte, fixed-width, sortable byte format. All 8-byte 230 * integers are serialized to the equivelant 9-byte format. Serialization is performed by writing a 231 * header byte, inverting the integer sign bit and writing the resulting bytes to the byte array in 232 * big endian order. 233 * </p> 234 * <h3>Fixed-length Floating Point Encoding</h3> 235 * <p> 236 * 32-bit and 64-bit floating point numbers are encoded to a 5-byte and 9-byte encoding format, 237 * respectively. The format is identical, save for the precision respected in each step of the 238 * operation. 239 * <p> 240 * This format ensures the following total ordering of floating point values: 241 * Float.NEGATIVE_INFINITY < -Float.MAX_VALUE < ... < -Float.MIN_VALUE < -0.0 < +0.0; 242 * < Float.MIN_VALUE < ... < Float.MAX_VALUE < Float.POSITIVE_INFINITY < Float.NaN 243 * </p> 244 * <p> 245 * Floating point numbers are encoded as specified in IEEE 754. A 32-bit single precision float 246 * consists of a sign bit, 8-bit unsigned exponent encoded in offset-127 notation, and a 23-bit 247 * significand. The format is described further in the 248 * <a href="http://en.wikipedia.org/wiki/Single_precision"> Single Precision Floating Point 249 * Wikipedia page</a> 250 * </p> 251 * <p> 252 * The value of a normal float is -1 <sup>sign bit</sup> × 2<sup>exponent - 127</sup> × 253 * 1.significand 254 * </p> 255 * <p> 256 * The IEE754 floating point format already preserves sort ordering for positive floating point 257 * numbers when the raw bytes are compared in most significant byte order. This is discussed further 258 * at <a href= "http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm"> 259 * http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm</a> 260 * </p> 261 * <p> 262 * Thus, we need only ensure that negative numbers sort in the the exact opposite order as positive 263 * numbers (so that say, negative infinity is less than negative 1), and that all negative numbers 264 * compare less than any positive number. To accomplish this, we invert the sign bit of all floating 265 * point numbers, and we also invert the exponent and significand bits if the floating point number 266 * was negative. 267 * </p> 268 * <p> 269 * More specifically, we first store the floating point bits into a 32-bit int {@code j} using 270 * {@link Float#floatToIntBits}. This method collapses all NaNs into a single, canonical NaN value 271 * but otherwise leaves the bits unchanged. We then compute 272 * </p> 273 * 274 * <pre> 275 * j ˆ= (j >> (Integer.SIZE - 1)) | Integer.MIN_SIZE 276 * </pre> 277 * <p> 278 * which inverts the sign bit and XOR's all other bits with the sign bit itself. Comparing the raw 279 * bytes of {@code j} in most significant byte order is equivalent to performing a single precision 280 * floating point comparison on the underlying bits (ignoring NaN comparisons, as NaNs don't compare 281 * equal to anything when performing floating point comparisons). 282 * </p> 283 * <p> 284 * The resulting integer is then converted into a byte array by serializing the integer one byte at 285 * a time in most significant byte order. The serialized integer is prefixed by a single header 286 * byte. All serialized values are 5 bytes in length. 287 * </p> 288 * <p> 289 * {@code OrderedBytes} encodings are heavily influenced by the 290 * <a href="http://sqlite.org/src4/doc/trunk/www/key_encoding.wiki">SQLite4 Key Encoding</a>. Slight 291 * deviations are make in the interest of order correctness and user extensibility. Fixed-width 292 * {@code Long} and {@link Double} encodings are based on implementations from the now defunct 293 * Orderly library. 294 * </p> 295 */ 296@InterfaceAudience.Public 297public class OrderedBytes { 298 299 /* 300 * These constants define header bytes used to identify encoded values. Note that the values here 301 * are not exhaustive as the Numeric format encodes portions of its value within the header byte. 302 * The values listed here are directly applied to persisted data -- DO NOT modify the values 303 * specified here. Instead, gaps are placed intentionally between values so that new 304 * implementations can be inserted into the total ordering enforced here. 305 */ 306 private static final byte NULL = 0x05; 307 // room for 1 expansion type 308 private static final byte NEG_INF = 0x07; 309 private static final byte NEG_LARGE = 0x08; 310 private static final byte NEG_MED_MIN = 0x09; 311 private static final byte NEG_MED_MAX = 0x13; 312 private static final byte NEG_SMALL = 0x14; 313 private static final byte ZERO = 0x15; 314 private static final byte POS_SMALL = 0x16; 315 private static final byte POS_MED_MIN = 0x17; 316 private static final byte POS_MED_MAX = 0x21; 317 private static final byte POS_LARGE = 0x22; 318 private static final byte POS_INF = 0x23; 319 // room for 2 expansion type 320 private static final byte NAN = 0x26; 321 // room for 2 expansion types 322 private static final byte FIXED_INT8 = 0x29; 323 private static final byte FIXED_INT16 = 0x2a; 324 private static final byte FIXED_INT32 = 0x2b; 325 private static final byte FIXED_INT64 = 0x2c; 326 // room for 3 expansion types 327 private static final byte FIXED_FLOAT32 = 0x30; 328 private static final byte FIXED_FLOAT64 = 0x31; 329 // room for 2 expansion type 330 private static final byte TEXT = 0x34; 331 // room for 2 expansion type 332 private static final byte BLOB_VAR = 0x37; 333 private static final byte BLOB_COPY = 0x38; 334 335 /* 336 * The following constant values are used by encoding implementations 337 */ 338 339 public static final Charset UTF8 = Charset.forName("UTF-8"); 340 private static final byte TERM = 0x00; 341 342 /** 343 * Max precision guaranteed to fit into a {@code long}. 344 */ 345 public static final int MAX_PRECISION = 31; 346 347 /** 348 * The context used to normalize {@link BigDecimal} values. 349 */ 350 public static final MathContext DEFAULT_MATH_CONTEXT = 351 new MathContext(MAX_PRECISION, RoundingMode.HALF_UP); 352 353 /** 354 * Creates the standard exception when the encoded header byte is unexpected for the decoding 355 * context. 356 * @param header value used in error message. 357 */ 358 private static IllegalArgumentException unexpectedHeader(byte header) { 359 throw new IllegalArgumentException( 360 "unexpected value in first byte: 0x" + Long.toHexString(header)); 361 } 362 363 /** 364 * Perform unsigned comparison between two long values. Conforms to the same interface as 365 * {@link org.apache.hadoop.hbase.CellComparator}. 366 */ 367 private static int unsignedCmp(long x1, long x2) { 368 int cmp; 369 if ((cmp = (x1 < x2 ? -1 : (x1 == x2 ? 0 : 1))) == 0) return 0; 370 // invert the result when either value is negative 371 if ((x1 < 0) != (x2 < 0)) return -cmp; 372 return cmp; 373 } 374 375 /** 376 * Write a 32-bit unsigned integer to {@code dst} as 4 big-endian bytes. 377 * @return number of bytes written. 378 */ 379 private static int putUint32(PositionedByteRange dst, int val) { 380 dst.put((byte) (val >>> 24)).put((byte) (val >>> 16)).put((byte) (val >>> 8)).put((byte) val); 381 return 4; 382 } 383 384 /** 385 * Encode an unsigned 64-bit unsigned integer {@code val} into {@code dst}. 386 * @param dst The destination to which encoded bytes are written. 387 * @param val The value to write. 388 * @param comp Compliment the encoded value when {@code comp} is true. 389 * @return number of bytes written. 390 */ 391 static int putVaruint64(PositionedByteRange dst, long val, boolean comp) { 392 int w, y, len = 0; 393 final int offset = dst.getOffset(), start = dst.getPosition(); 394 byte[] a = dst.getBytes(); 395 Order ord = comp ? DESCENDING : ASCENDING; 396 if (-1 == unsignedCmp(val, 241L)) { 397 dst.put((byte) val); 398 len = dst.getPosition() - start; 399 ord.apply(a, offset + start, len); 400 return len; 401 } 402 if (-1 == unsignedCmp(val, 2288L)) { 403 y = (int) (val - 240); 404 dst.put((byte) (y / 256 + 241)).put((byte) (y % 256)); 405 len = dst.getPosition() - start; 406 ord.apply(a, offset + start, len); 407 return len; 408 } 409 if (-1 == unsignedCmp(val, 67824L)) { 410 y = (int) (val - 2288); 411 dst.put((byte) 249).put((byte) (y / 256)).put((byte) (y % 256)); 412 len = dst.getPosition() - start; 413 ord.apply(a, offset + start, len); 414 return len; 415 } 416 y = (int) val; 417 w = (int) (val >>> 32); 418 if (w == 0) { 419 if (-1 == unsignedCmp(y, 16777216L)) { 420 dst.put((byte) 250).put((byte) (y >>> 16)).put((byte) (y >>> 8)).put((byte) y); 421 len = dst.getPosition() - start; 422 ord.apply(a, offset + start, len); 423 return len; 424 } 425 dst.put((byte) 251); 426 putUint32(dst, y); 427 len = dst.getPosition() - start; 428 ord.apply(a, offset + start, len); 429 return len; 430 } 431 if (-1 == unsignedCmp(w, 256L)) { 432 dst.put((byte) 252).put((byte) w); 433 putUint32(dst, y); 434 len = dst.getPosition() - start; 435 ord.apply(a, offset + start, len); 436 return len; 437 } 438 if (-1 == unsignedCmp(w, 65536L)) { 439 dst.put((byte) 253).put((byte) (w >>> 8)).put((byte) w); 440 putUint32(dst, y); 441 len = dst.getPosition() - start; 442 ord.apply(a, offset + start, len); 443 return len; 444 } 445 if (-1 == unsignedCmp(w, 16777216L)) { 446 dst.put((byte) 254).put((byte) (w >>> 16)).put((byte) (w >>> 8)).put((byte) w); 447 putUint32(dst, y); 448 len = dst.getPosition() - start; 449 ord.apply(a, offset + start, len); 450 return len; 451 } 452 dst.put((byte) 255); 453 putUint32(dst, w); 454 putUint32(dst, y); 455 len = dst.getPosition() - start; 456 ord.apply(a, offset + start, len); 457 return len; 458 } 459 460 /** 461 * Inspect {@code src} for an encoded varuint64 for its length in bytes. Preserves the state of 462 * {@code src}. 463 * @param src source buffer 464 * @param comp if true, parse the compliment of the value. 465 * @return the number of bytes consumed by this value. 466 */ 467 static int lengthVaruint64(PositionedByteRange src, boolean comp) { 468 int a0 = (comp ? DESCENDING : ASCENDING).apply(src.peek()) & 0xff; 469 if (a0 <= 240) return 1; 470 if (a0 <= 248) return 2; 471 if (a0 == 249) return 3; 472 if (a0 == 250) return 4; 473 if (a0 == 251) return 5; 474 if (a0 == 252) return 6; 475 if (a0 == 253) return 7; 476 if (a0 == 254) return 8; 477 if (a0 == 255) return 9; 478 throw unexpectedHeader(src.peek()); 479 } 480 481 /** 482 * Skip {@code src} over the encoded varuint64. 483 * @param src source buffer 484 * @param cmp if true, parse the compliment of the value. 485 * @return the number of bytes skipped. 486 */ 487 static int skipVaruint64(PositionedByteRange src, boolean cmp) { 488 final int len = lengthVaruint64(src, cmp); 489 src.setPosition(src.getPosition() + len); 490 return len; 491 } 492 493 /** 494 * Decode a sequence of bytes in {@code src} as a varuint64. Compliment the encoded value when 495 * {@code comp} is true. 496 * @return the decoded value. 497 */ 498 static long getVaruint64(PositionedByteRange src, boolean comp) { 499 assert src.getRemaining() >= lengthVaruint64(src, comp); 500 final long ret; 501 Order ord = comp ? DESCENDING : ASCENDING; 502 byte x = src.get(); 503 final int a0 = ord.apply(x) & 0xff, a1, a2, a3, a4, a5, a6, a7, a8; 504 if (-1 == unsignedCmp(a0, 241)) { 505 return a0; 506 } 507 x = src.get(); 508 a1 = ord.apply(x) & 0xff; 509 if (-1 == unsignedCmp(a0, 249)) { 510 return (a0 - 241L) * 256 + a1 + 240; 511 } 512 x = src.get(); 513 a2 = ord.apply(x) & 0xff; 514 if (a0 == 249) { 515 return 2288L + 256 * a1 + a2; 516 } 517 x = src.get(); 518 a3 = ord.apply(x) & 0xff; 519 if (a0 == 250) { 520 return ((long) a1 << 16L) | (a2 << 8) | a3; 521 } 522 x = src.get(); 523 a4 = ord.apply(x) & 0xff; 524 ret = (((long) a1) << 24) | (a2 << 16) | (a3 << 8) | a4; 525 if (a0 == 251) { 526 return ret; 527 } 528 x = src.get(); 529 a5 = ord.apply(x) & 0xff; 530 if (a0 == 252) { 531 return (ret << 8) | a5; 532 } 533 x = src.get(); 534 a6 = ord.apply(x) & 0xff; 535 if (a0 == 253) { 536 return (ret << 16) | (a5 << 8) | a6; 537 } 538 x = src.get(); 539 a7 = ord.apply(x) & 0xff; 540 if (a0 == 254) { 541 return (ret << 24) | (a5 << 16) | (a6 << 8) | a7; 542 } 543 x = src.get(); 544 a8 = ord.apply(x) & 0xff; 545 return (ret << 32) | (((long) a5) << 24) | (a6 << 16) | (a7 << 8) | a8; 546 } 547 548 /** 549 * Strip all trailing zeros to ensure that no digit will be zero and round using our default 550 * context to ensure precision doesn't exceed max allowed. From Phoenix's {@code NumberUtil}. 551 * @return new {@link BigDecimal} instance 552 */ 553 static BigDecimal normalize(BigDecimal val) { 554 return null == val ? null : val.stripTrailingZeros().round(DEFAULT_MATH_CONTEXT); 555 } 556 557 /** 558 * Read significand digits from {@code src} according to the magnitude of {@code e}. 559 * @param src The source from which to read encoded digits. 560 * @param e The magnitude of the first digit read. 561 * @param comp Treat encoded bytes as compliments when {@code comp} is true. 562 * @return The decoded value. 563 * @throws IllegalArgumentException when read exceeds the remaining length of {@code src}. 564 */ 565 private static BigDecimal decodeSignificand(PositionedByteRange src, int e, boolean comp) { 566 // TODO: can this be made faster? 567 byte[] a = src.getBytes(); 568 final int start = src.getPosition(), offset = src.getOffset(), remaining = src.getRemaining(); 569 Order ord = comp ? DESCENDING : ASCENDING; 570 BigDecimal m; 571 StringBuilder sb = new StringBuilder(); 572 for (int i = 0;; i++) { 573 if (i > remaining) { 574 // we've exceeded this range's window 575 src.setPosition(start); 576 throw new IllegalArgumentException( 577 "Read exceeds range before termination byte found. offset: " + offset + " position: " 578 + (start + i)); 579 } 580 // one byte -> 2 digits 581 // base-100 digits are encoded as val * 2 + 1 except for the termination digit. 582 int twoDigits = (ord.apply(a[offset + start + i]) & 0xff) / 2; 583 sb.append(String.format("%02d", twoDigits)); 584 // detect termination digit 585 // Besides, as we will normalise the return value at last, 586 // we only need to decode at most MAX_PRECISION + 2 digits here. 587 if ((ord.apply(a[offset + start + i]) & 1) == 0 || sb.length() > MAX_PRECISION + 1) { 588 src.setPosition(start + i + 1); 589 break; 590 } 591 } 592 m = new BigDecimal(sb.toString()); 593 int stepsMoveLeft = sb.charAt(0) != '0' ? m.precision() : m.precision() + 1; 594 stepsMoveLeft -= e * 2; 595 596 return normalize(m.movePointLeft(stepsMoveLeft)); 597 } 598 599 /** 600 * Skip {@code src} over the significand bytes. 601 * @param src The source from which to read encoded digits. 602 * @param comp Treat encoded bytes as compliments when {@code comp} is true. 603 * @return the number of bytes skipped. 604 */ 605 private static int skipSignificand(PositionedByteRange src, boolean comp) { 606 byte[] a = src.getBytes(); 607 final int offset = src.getOffset(), start = src.getPosition(); 608 int i = src.getPosition(); 609 while (((comp ? DESCENDING : ASCENDING).apply(a[offset + i++]) & 1) != 0) 610 ; 611 src.setPosition(i); 612 return i - start; 613 } 614 615 /** 616 * <p> 617 * Encode the small magnitude floating point number {@code val} using the key encoding. The caller 618 * guarantees that 1.0 > abs(val) > 0.0. 619 * </p> 620 * <p> 621 * A floating point value is encoded as an integer exponent {@code E} and a mantissa {@code M}. 622 * The original value is equal to {@code (M * 100^E)}. {@code E} is set to the smallest value 623 * possible without making {@code M} greater than or equal to 1.0. 624 * </p> 625 * <p> 626 * For this routine, {@code E} will always be zero or negative, since the original value is less 627 * than one. The encoding written by this routine is the ones-complement of the varint of the 628 * negative of {@code E} followed by the mantissa: 629 * 630 * <pre> 631 * Encoding: ~-E M 632 * </pre> 633 * </p> 634 * @param dst The destination to which encoded digits are written. 635 * @param val The value to encode. 636 * @return the number of bytes written. 637 */ 638 private static int encodeNumericSmall(PositionedByteRange dst, BigDecimal val) { 639 // TODO: this can be done faster? 640 // assert 1.0 > abs(val) > 0.0 641 BigDecimal abs = val.abs(); 642 assert BigDecimal.ZERO.compareTo(abs) < 0 && BigDecimal.ONE.compareTo(abs) > 0; 643 byte[] a = dst.getBytes(); 644 boolean isNeg = val.signum() == -1; 645 final int offset = dst.getOffset(), start = dst.getPosition(); 646 647 if (isNeg) { /* Small negative number: 0x14, -E, ~M */ 648 dst.put(NEG_SMALL); 649 } else { /* Small positive number: 0x16, ~-E, M */ 650 dst.put(POS_SMALL); 651 } 652 653 // normalize abs(val) to determine E 654 int zerosBeforeFirstNonZero = abs.scale() - abs.precision(); 655 int lengthToMoveRight = 656 zerosBeforeFirstNonZero % 2 == 0 ? zerosBeforeFirstNonZero : zerosBeforeFirstNonZero - 1; 657 int e = lengthToMoveRight / 2; 658 abs = abs.movePointRight(lengthToMoveRight); 659 660 putVaruint64(dst, e, !isNeg); // encode appropriate E value. 661 662 // encode M by peeling off centimal digits, encoding x as 2x+1 663 int startM = dst.getPosition(); 664 encodeToCentimal(dst, abs); 665 // terminal digit should be 2x 666 a[offset + dst.getPosition() - 1] = (byte) (a[offset + dst.getPosition() - 1] & 0xfe); 667 if (isNeg) { 668 // negative values encoded as ~M 669 DESCENDING.apply(a, offset + startM, dst.getPosition() - startM); 670 } 671 return dst.getPosition() - start; 672 } 673 674 /** 675 * Encode the large magnitude floating point number {@code val} using the key encoding. The caller 676 * guarantees that {@code val} will be finite and abs(val) >= 1.0. 677 * <p> 678 * A floating point value is encoded as an integer exponent {@code E} and a mantissa {@code M}. 679 * The original value is equal to {@code (M * 100^E)}. {@code E} is set to the smallest value 680 * possible without making {@code M} greater than or equal to 1.0. 681 * </p> 682 * <p> 683 * Each centimal digit of the mantissa is stored in a byte. If the value of the centimal digit is 684 * {@code X} (hence {@code X>=0} and {@code X<=99}) then the byte value will be {@code 2*X+1} for 685 * every byte of the mantissa, except for the last byte which will be {@code 2*X+0}. The mantissa 686 * must be the minimum number of bytes necessary to represent the value; trailing {@code X==0} 687 * digits are omitted. This means that the mantissa will never contain a byte with the value 688 * {@code 0x00}. 689 * </p> 690 * <p> 691 * If {@code E > 10}, then this routine writes of {@code E} as a varint followed by the mantissa 692 * as described above. Otherwise, if {@code E <= 10}, this routine only writes the mantissa and 693 * leaves the {@code E} value to be encoded as part of the opening byte of the field by the 694 * calling function. 695 * 696 * <pre> 697 * Encoding: M (if E<=10) 698 * E M (if E>10) 699 * </pre> 700 * </p> 701 * @param dst The destination to which encoded digits are written. 702 * @param val The value to encode. 703 * @return the number of bytes written. 704 */ 705 private static int encodeNumericLarge(PositionedByteRange dst, BigDecimal val) { 706 // TODO: this can be done faster 707 BigDecimal abs = val.abs(); 708 byte[] a = dst.getBytes(); 709 boolean isNeg = val.signum() == -1; 710 final int start = dst.getPosition(), offset = dst.getOffset(); 711 712 if (isNeg) { /* Large negative number: 0x08, ~E, ~M */ 713 dst.put(NEG_LARGE); 714 } else { /* Large positive number: 0x22, E, M */ 715 dst.put(POS_LARGE); 716 } 717 718 // normalize abs(val) to determine E 719 int integerDigits = abs.precision() - abs.scale(); 720 int lengthToMoveLeft = integerDigits % 2 == 0 ? integerDigits : integerDigits + 1; 721 int e = lengthToMoveLeft / 2; 722 abs = abs.movePointLeft(lengthToMoveLeft); 723 724 // encode appropriate header byte and/or E value. 725 if (e > 10) { /* large number, write out {~,}E */ 726 putVaruint64(dst, e, isNeg); 727 } else { 728 if (isNeg) { /* Medium negative number: 0x13-E, ~M */ 729 dst.put(start, (byte) (NEG_MED_MAX - e)); 730 } else { /* Medium positive number: 0x17+E, M */ 731 dst.put(start, (byte) (POS_MED_MIN + e)); 732 } 733 } 734 735 // encode M by peeling off centimal digits, encoding x as 2x+1 736 int startM = dst.getPosition(); 737 encodeToCentimal(dst, abs); 738 // terminal digit should be 2x 739 a[offset + dst.getPosition() - 1] = (byte) (a[offset + dst.getPosition() - 1] & 0xfe); 740 if (isNeg) { 741 // negative values encoded as ~M 742 DESCENDING.apply(a, offset + startM, dst.getPosition() - startM); 743 } 744 return dst.getPosition() - start; 745 } 746 747 /** 748 * Encode a value val in [0.01, 1.0) into Centimals. Util function for 749 * {@link OrderedBytes#encodeNumericLarge(PositionedByteRange, BigDecimal)} and 750 * {@link OrderedBytes#encodeNumericSmall(PositionedByteRange, BigDecimal)} 751 * @param dst The destination to which encoded digits are written. 752 * @param val A BigDecimal after the normalization. The value must be in [0.01, 1.0). 753 */ 754 private static void encodeToCentimal(PositionedByteRange dst, BigDecimal val) { 755 // The input value val must be in [0.01, 1.0) 756 String stringOfAbs = val.stripTrailingZeros().toPlainString(); 757 String value = stringOfAbs.substring(stringOfAbs.indexOf('.') + 1); 758 int d; 759 760 // If the first float digit is 0, we will encode one digit more than MAX_PRECISION 761 // We encode at most MAX_PRECISION significant digits into centimals, 762 // because the input value, has been already normalized. 763 int maxPrecision = value.charAt(0) == '0' ? MAX_PRECISION + 1 : MAX_PRECISION; 764 maxPrecision = Math.min(maxPrecision, value.length()); 765 for (int i = 0; i < maxPrecision; i += 2) { 766 d = (value.charAt(i) - '0') * 10; 767 if (i + 1 < maxPrecision) { 768 d += (value.charAt(i + 1) - '0'); 769 } 770 dst.put((byte) (2 * d + 1)); 771 } 772 } 773 774 /** 775 * Encode a numerical value using the variable-length encoding. 776 * @param dst The destination to which encoded digits are written. 777 * @param val The value to encode. 778 * @param ord The {@link Order} to respect while encoding {@code val}. 779 * @return the number of bytes written. 780 */ 781 public static int encodeNumeric(PositionedByteRange dst, long val, Order ord) { 782 return encodeNumeric(dst, BigDecimal.valueOf(val), ord); 783 } 784 785 /** 786 * Encode a numerical value using the variable-length encoding. 787 * @param dst The destination to which encoded digits are written. 788 * @param val The value to encode. 789 * @param ord The {@link Order} to respect while encoding {@code val}. 790 * @return the number of bytes written. 791 */ 792 public static int encodeNumeric(PositionedByteRange dst, double val, Order ord) { 793 if (val == 0.0) { 794 dst.put(ord.apply(ZERO)); 795 return 1; 796 } 797 if (Double.isNaN(val)) { 798 dst.put(ord.apply(NAN)); 799 return 1; 800 } 801 if (val == Double.NEGATIVE_INFINITY) { 802 dst.put(ord.apply(NEG_INF)); 803 return 1; 804 } 805 if (val == Double.POSITIVE_INFINITY) { 806 dst.put(ord.apply(POS_INF)); 807 return 1; 808 } 809 return encodeNumeric(dst, BigDecimal.valueOf(val), ord); 810 } 811 812 /** 813 * Encode a numerical value using the variable-length encoding. If the number of significant 814 * digits of the value exceeds the {@link OrderedBytes#MAX_PRECISION}, the exceeding part will be 815 * lost. 816 * @param dst The destination to which encoded digits are written. 817 * @param val The value to encode. 818 * @param ord The {@link Order} to respect while encoding {@code val}. 819 * @return the number of bytes written. 820 */ 821 public static int encodeNumeric(PositionedByteRange dst, BigDecimal val, Order ord) { 822 final int len, offset = dst.getOffset(), start = dst.getPosition(); 823 if (null == val) { 824 return encodeNull(dst, ord); 825 } else if (BigDecimal.ZERO.compareTo(val) == 0) { 826 dst.put(ord.apply(ZERO)); 827 return 1; 828 } 829 BigDecimal abs = val.abs(); 830 if (BigDecimal.ONE.compareTo(abs) <= 0) { // abs(v) >= 1.0 831 len = encodeNumericLarge(dst, normalize(val)); 832 } else { // 1.0 > abs(v) >= 0.0 833 len = encodeNumericSmall(dst, normalize(val)); 834 } 835 ord.apply(dst.getBytes(), offset + start, len); 836 return len; 837 } 838 839 /** 840 * Decode a {@link BigDecimal} from {@code src}. Assumes {@code src} encodes a value in Numeric 841 * encoding and is within the valid range of {@link BigDecimal} values. {@link BigDecimal} does 842 * not support {@code NaN} or {@code Infinte} values. 843 * @see #decodeNumericAsDouble(PositionedByteRange) 844 */ 845 private static BigDecimal decodeNumericValue(PositionedByteRange src) { 846 final int e; 847 byte header = src.get(); 848 boolean dsc = -1 == Integer.signum(header); 849 header = dsc ? DESCENDING.apply(header) : header; 850 851 if (header == NULL) return null; 852 if (header == NEG_LARGE) { /* Large negative number: 0x08, ~E, ~M */ 853 e = (int) getVaruint64(src, !dsc); 854 return decodeSignificand(src, e, !dsc).negate(); 855 } 856 if (header >= NEG_MED_MIN && header <= NEG_MED_MAX) { 857 /* Medium negative number: 0x13-E, ~M */ 858 e = NEG_MED_MAX - header; 859 return decodeSignificand(src, e, !dsc).negate(); 860 } 861 if (header == NEG_SMALL) { /* Small negative number: 0x14, -E, ~M */ 862 e = (int) -getVaruint64(src, dsc); 863 return decodeSignificand(src, e, !dsc).negate(); 864 } 865 if (header == ZERO) { 866 return BigDecimal.ZERO; 867 } 868 if (header == POS_SMALL) { /* Small positive number: 0x16, ~-E, M */ 869 e = (int) -getVaruint64(src, !dsc); 870 return decodeSignificand(src, e, dsc); 871 } 872 if (header >= POS_MED_MIN && header <= POS_MED_MAX) { 873 /* Medium positive number: 0x17+E, M */ 874 e = header - POS_MED_MIN; 875 return decodeSignificand(src, e, dsc); 876 } 877 if (header == POS_LARGE) { /* Large positive number: 0x22, E, M */ 878 e = (int) getVaruint64(src, dsc); 879 return decodeSignificand(src, e, dsc); 880 } 881 throw unexpectedHeader(header); 882 } 883 884 /** 885 * Decode a primitive {@code double} value from the Numeric encoding. Numeric encoding is based on 886 * {@link BigDecimal}; in the event the encoded value is larger than can be represented in a 887 * {@code double}, this method performs an implicit narrowing conversion as described in 888 * {@link BigDecimal#doubleValue()}. 889 * @throws NullPointerException when the encoded value is {@code NULL}. 890 * @throws IllegalArgumentException when the encoded value is not a Numeric. 891 * @see #encodeNumeric(PositionedByteRange, double, Order) 892 * @see BigDecimal#doubleValue() 893 */ 894 public static double decodeNumericAsDouble(PositionedByteRange src) { 895 // TODO: should an encoded NULL value throw unexpectedHeader() instead? 896 if (isNull(src)) { 897 throw new NullPointerException("A null value cannot be decoded to a double."); 898 } 899 if (isNumericNaN(src)) { 900 src.get(); 901 return Double.NaN; 902 } 903 if (isNumericZero(src)) { 904 src.get(); 905 return Double.valueOf(0.0); 906 } 907 908 byte header = -1 == Integer.signum(src.peek()) ? DESCENDING.apply(src.peek()) : src.peek(); 909 910 if (header == NEG_INF) { 911 src.get(); 912 return Double.NEGATIVE_INFINITY; 913 } else if (header == POS_INF) { 914 src.get(); 915 return Double.POSITIVE_INFINITY; 916 } else { 917 return decodeNumericValue(src).doubleValue(); 918 } 919 } 920 921 /** 922 * Decode a primitive {@code long} value from the Numeric encoding. Numeric encoding is based on 923 * {@link BigDecimal}; in the event the encoded value is larger than can be represented in a 924 * {@code long}, this method performs an implicit narrowing conversion as described in 925 * {@link BigDecimal#doubleValue()}. 926 * @throws NullPointerException when the encoded value is {@code NULL}. 927 * @throws IllegalArgumentException when the encoded value is not a Numeric. 928 * @see #encodeNumeric(PositionedByteRange, long, Order) 929 * @see BigDecimal#longValue() 930 */ 931 public static long decodeNumericAsLong(PositionedByteRange src) { 932 // TODO: should an encoded NULL value throw unexpectedHeader() instead? 933 if (isNull(src)) throw new NullPointerException(); 934 if (!isNumeric(src)) throw unexpectedHeader(src.peek()); 935 if (isNumericNaN(src)) throw unexpectedHeader(src.peek()); 936 if (isNumericInfinite(src)) throw unexpectedHeader(src.peek()); 937 938 if (isNumericZero(src)) { 939 src.get(); 940 return Long.valueOf(0); 941 } 942 return decodeNumericValue(src).longValue(); 943 } 944 945 /** 946 * Decode a {@link BigDecimal} value from the variable-length encoding. 947 * @throws IllegalArgumentException when the encoded value is not a Numeric. 948 * @see #encodeNumeric(PositionedByteRange, BigDecimal, Order) 949 */ 950 public static BigDecimal decodeNumericAsBigDecimal(PositionedByteRange src) { 951 if (isNull(src)) { 952 src.get(); 953 return null; 954 } 955 if (!isNumeric(src)) throw unexpectedHeader(src.peek()); 956 if (isNumericNaN(src)) throw unexpectedHeader(src.peek()); 957 if (isNumericInfinite(src)) throw unexpectedHeader(src.peek()); 958 return decodeNumericValue(src); 959 } 960 961 /** 962 * Encode a String value. String encoding is 0x00-terminated and so it does not support 963 * {@code \u0000} codepoints in the value. 964 * @param dst The destination to which the encoded value is written. 965 * @param val The value to encode. 966 * @param ord The {@link Order} to respect while encoding {@code val}. 967 * @return the number of bytes written. 968 * @throws IllegalArgumentException when {@code val} contains a {@code \u0000}. 969 */ 970 public static int encodeString(PositionedByteRange dst, String val, Order ord) { 971 if (null == val) { 972 return encodeNull(dst, ord); 973 } 974 if (val.contains("\u0000")) 975 throw new IllegalArgumentException("Cannot encode String values containing '\\u0000'"); 976 final int offset = dst.getOffset(), start = dst.getPosition(); 977 dst.put(TEXT); 978 // TODO: is there no way to decode into dst directly? 979 dst.put(val.getBytes(UTF8)); 980 dst.put(TERM); 981 ord.apply(dst.getBytes(), offset + start, dst.getPosition() - start); 982 return dst.getPosition() - start; 983 } 984 985 /** 986 * Decode a String value. 987 */ 988 public static String decodeString(PositionedByteRange src) { 989 final byte header = src.get(); 990 if (header == NULL || header == DESCENDING.apply(NULL)) return null; 991 assert header == TEXT || header == DESCENDING.apply(TEXT); 992 Order ord = header == TEXT ? ASCENDING : DESCENDING; 993 byte[] a = src.getBytes(); 994 final int offset = src.getOffset(), start = src.getPosition(); 995 final byte terminator = ord.apply(TERM); 996 int rawStartPos = offset + start, rawTermPos = rawStartPos; 997 for (; a[rawTermPos] != terminator; rawTermPos++) 998 ; 999 src.setPosition(rawTermPos - offset + 1); // advance position to TERM + 1 1000 if (DESCENDING == ord) { 1001 // make a copy so that we don't disturb encoded value with ord. 1002 byte[] copy = new byte[rawTermPos - rawStartPos]; 1003 System.arraycopy(a, rawStartPos, copy, 0, copy.length); 1004 ord.apply(copy); 1005 return new String(copy, UTF8); 1006 } else { 1007 return new String(a, rawStartPos, rawTermPos - rawStartPos, UTF8); 1008 } 1009 } 1010 1011 /** 1012 * Calculate the expected BlobVar encoded length based on unencoded length. 1013 */ 1014 public static int blobVarEncodedLength(int len) { 1015 if (0 == len) return 2; // 1-byte header + 1-byte terminator 1016 else return (int) Math.ceil((len * 8) // 8-bits per input byte 1017 / 7.0) // 7-bits of input data per encoded byte, rounded up 1018 + 1; // + 1-byte header 1019 } 1020 1021 /** 1022 * Calculate the expected BlobVar decoded length based on encoded length. 1023 */ 1024 static int blobVarDecodedLength(int len) { 1025 return ((len - 1) // 1-byte header 1026 * 7) // 7-bits of payload per encoded byte 1027 / 8; // 8-bits per byte 1028 } 1029 1030 /** 1031 * Encode a Blob value using a modified varint encoding scheme. 1032 * <p> 1033 * This format encodes a byte[] value such that no limitations on the input value are imposed. The 1034 * first byte encodes the encoding scheme that follows, {@link #BLOB_VAR}. Each encoded byte 1035 * thereafter consists of a header bit followed by 7 bits of payload. A header bit of '1' 1036 * indicates continuation of the encoding. A header bit of '0' indicates this byte contains the 1037 * last of the payload. An empty input value is encoded as the header byte immediately followed by 1038 * a termination byte {@code 0x00}. This is not ambiguous with the encoded value of {@code []}, 1039 * which results in {@code [0x80, 0x00]}. 1040 * </p> 1041 * @return the number of bytes written. 1042 */ 1043 public static int encodeBlobVar(PositionedByteRange dst, byte[] val, int voff, int vlen, 1044 Order ord) { 1045 if (null == val) { 1046 return encodeNull(dst, ord); 1047 } 1048 // Empty value is null-terminated. All other values are encoded as 7-bits per byte. 1049 assert dst.getRemaining() >= blobVarEncodedLength(vlen) : "buffer overflow expected."; 1050 final int offset = dst.getOffset(), start = dst.getPosition(); 1051 dst.put(BLOB_VAR); 1052 if (0 == vlen) { 1053 dst.put(TERM); 1054 } else { 1055 byte s = 1, t = 0; 1056 for (int i = voff; i < vlen; i++) { 1057 dst.put((byte) (0x80 | t | ((val[i] & 0xff) >>> s))); 1058 if (s < 7) { 1059 t = (byte) (val[i] << (7 - s)); 1060 s++; 1061 } else { 1062 dst.put((byte) (0x80 | val[i])); 1063 s = 1; 1064 t = 0; 1065 } 1066 } 1067 if (s > 1) { 1068 dst.put((byte) (0x7f & t)); 1069 } else { 1070 dst.getBytes()[offset + dst.getPosition() - 1] = 1071 (byte) (dst.getBytes()[offset + dst.getPosition() - 1] & 0x7f); 1072 } 1073 } 1074 ord.apply(dst.getBytes(), offset + start, dst.getPosition() - start); 1075 return dst.getPosition() - start; 1076 } 1077 1078 /** 1079 * Encode a blob value using a modified varint encoding scheme. 1080 * @return the number of bytes written. 1081 * @see #encodeBlobVar(PositionedByteRange, byte[], int, int, Order) 1082 */ 1083 public static int encodeBlobVar(PositionedByteRange dst, byte[] val, Order ord) { 1084 return encodeBlobVar(dst, val, 0, null != val ? val.length : 0, ord); 1085 } 1086 1087 /** 1088 * Decode a blob value that was encoded using BlobVar encoding. 1089 */ 1090 public static byte[] decodeBlobVar(PositionedByteRange src) { 1091 final byte header = src.get(); 1092 if (header == NULL || header == DESCENDING.apply(NULL)) { 1093 return null; 1094 } 1095 assert header == BLOB_VAR || header == DESCENDING.apply(BLOB_VAR); 1096 Order ord = BLOB_VAR == header ? ASCENDING : DESCENDING; 1097 if (src.peek() == ord.apply(TERM)) { 1098 // skip empty input buffer. 1099 src.get(); 1100 return new byte[0]; 1101 } 1102 final int offset = src.getOffset(), start = src.getPosition(); 1103 int end; 1104 byte[] a = src.getBytes(); 1105 for (end = start; (byte) (ord.apply(a[offset + end]) & 0x80) != TERM; end++) 1106 ; 1107 end++; // increment end to 1-past last byte 1108 // create ret buffer using length of encoded data + 1 (header byte) 1109 PositionedByteRange ret = 1110 new SimplePositionedMutableByteRange(blobVarDecodedLength(end - start + 1)); 1111 int s = 6; 1112 byte t = (byte) ((ord.apply(a[offset + start]) << 1) & 0xff); 1113 for (int i = start + 1; i < end; i++) { 1114 if (s == 7) { 1115 ret.put((byte) (t | (ord.apply(a[offset + i]) & 0x7f))); 1116 i++; 1117 // explicitly reset t -- clean up overflow buffer after decoding 1118 // a full cycle and retain assertion condition below. This happens 1119 t = 0; // when the LSB in the last encoded byte is 1. (HBASE-9893) 1120 } else { 1121 ret.put((byte) (t | ((ord.apply(a[offset + i]) & 0x7f) >>> s))); 1122 } 1123 if (i == end) break; 1124 t = (byte) ((ord.apply(a[offset + i]) << (8 - s)) & 0xff); 1125 s = s == 1 ? 7 : s - 1; 1126 } 1127 src.setPosition(end); 1128 assert t == 0 : "Unexpected bits remaining after decoding blob."; 1129 assert ret.getPosition() == ret.getLength() : "Allocated unnecessarily large return buffer."; 1130 return ret.getBytes(); 1131 } 1132 1133 /** 1134 * Encode a Blob value as a byte-for-byte copy. BlobCopy encoding in DESCENDING order is NULL 1135 * terminated so as to preserve proper sorting of {@code []} and so it does not support 1136 * {@code 0x00} in the value. 1137 * @return the number of bytes written. 1138 * @throws IllegalArgumentException when {@code ord} is DESCENDING and {@code val} contains a 1139 * {@code 0x00} byte. 1140 */ 1141 public static int encodeBlobCopy(PositionedByteRange dst, byte[] val, int voff, int vlen, 1142 Order ord) { 1143 if (null == val) { 1144 encodeNull(dst, ord); 1145 if (ASCENDING == ord) return 1; 1146 else { 1147 // DESCENDING ordered BlobCopy requires a termination bit to preserve 1148 // sort-order semantics of null values. 1149 dst.put(ord.apply(TERM)); 1150 return 2; 1151 } 1152 } 1153 // Blobs as final entry in a compound key are written unencoded. 1154 assert dst.getRemaining() >= vlen + (ASCENDING == ord ? 1 : 2); 1155 if (DESCENDING == ord) { 1156 for (int i = 0; i < vlen; i++) { 1157 if (TERM == val[voff + i]) { 1158 throw new IllegalArgumentException("0x00 bytes not permitted in value."); 1159 } 1160 } 1161 } 1162 final int offset = dst.getOffset(), start = dst.getPosition(); 1163 dst.put(BLOB_COPY); 1164 dst.put(val, voff, vlen); 1165 // DESCENDING ordered BlobCopy requires a termination bit to preserve 1166 // sort-order semantics of null values. 1167 if (DESCENDING == ord) dst.put(TERM); 1168 ord.apply(dst.getBytes(), offset + start, dst.getPosition() - start); 1169 return dst.getPosition() - start; 1170 } 1171 1172 /** 1173 * Encode a Blob value as a byte-for-byte copy. BlobCopy encoding in DESCENDING order is NULL 1174 * terminated so as to preserve proper sorting of {@code []} and so it does not support 1175 * {@code 0x00} in the value. 1176 * @return the number of bytes written. 1177 * @throws IllegalArgumentException when {@code ord} is DESCENDING and {@code val} contains a 1178 * {@code 0x00} byte. 1179 * @see #encodeBlobCopy(PositionedByteRange, byte[], int, int, Order) 1180 */ 1181 public static int encodeBlobCopy(PositionedByteRange dst, byte[] val, Order ord) { 1182 return encodeBlobCopy(dst, val, 0, null != val ? val.length : 0, ord); 1183 } 1184 1185 /** 1186 * Decode a Blob value, byte-for-byte copy. 1187 * @see #encodeBlobCopy(PositionedByteRange, byte[], int, int, Order) 1188 */ 1189 public static byte[] decodeBlobCopy(PositionedByteRange src) { 1190 byte header = src.get(); 1191 if (header == NULL || header == DESCENDING.apply(NULL)) { 1192 return null; 1193 } 1194 assert header == BLOB_COPY || header == DESCENDING.apply(BLOB_COPY); 1195 Order ord = header == BLOB_COPY ? ASCENDING : DESCENDING; 1196 final int length = src.getRemaining() - (ASCENDING == ord ? 0 : 1); 1197 byte[] ret = new byte[length]; 1198 src.get(ret); 1199 ord.apply(ret, 0, ret.length); 1200 // DESCENDING ordered BlobCopy requires a termination bit to preserve 1201 // sort-order semantics of null values. 1202 if (DESCENDING == ord) src.get(); 1203 return ret; 1204 } 1205 1206 /** 1207 * Encode a null value. 1208 * @param dst The destination to which encoded digits are written. 1209 * @param ord The {@link Order} to respect while encoding {@code val}. 1210 * @return the number of bytes written. 1211 */ 1212 public static int encodeNull(PositionedByteRange dst, Order ord) { 1213 dst.put(ord.apply(NULL)); 1214 return 1; 1215 } 1216 1217 /** 1218 * Encode an {@code int8} value using the fixed-length encoding. 1219 * @return the number of bytes written. 1220 * @see #encodeInt64(PositionedByteRange, long, Order) 1221 * @see #decodeInt8(PositionedByteRange) 1222 */ 1223 public static int encodeInt8(PositionedByteRange dst, byte val, Order ord) { 1224 final int offset = dst.getOffset(), start = dst.getPosition(); 1225 dst.put(FIXED_INT8).put((byte) (val ^ 0x80)); 1226 ord.apply(dst.getBytes(), offset + start, 2); 1227 return 2; 1228 } 1229 1230 /** 1231 * Decode an {@code int8} value. 1232 * @see #encodeInt8(PositionedByteRange, byte, Order) 1233 */ 1234 public static byte decodeInt8(PositionedByteRange src) { 1235 final byte header = src.get(); 1236 assert header == FIXED_INT8 || header == DESCENDING.apply(FIXED_INT8); 1237 Order ord = header == FIXED_INT8 ? ASCENDING : DESCENDING; 1238 return (byte) ((ord.apply(src.get()) ^ 0x80) & 0xff); 1239 } 1240 1241 /** 1242 * Encode an {@code int16} value using the fixed-length encoding. 1243 * @return the number of bytes written. 1244 * @see #encodeInt64(PositionedByteRange, long, Order) 1245 * @see #decodeInt16(PositionedByteRange) 1246 */ 1247 public static int encodeInt16(PositionedByteRange dst, short val, Order ord) { 1248 final int offset = dst.getOffset(), start = dst.getPosition(); 1249 dst.put(FIXED_INT16).put((byte) ((val >> 8) ^ 0x80)).put((byte) val); 1250 ord.apply(dst.getBytes(), offset + start, 3); 1251 return 3; 1252 } 1253 1254 /** 1255 * Decode an {@code int16} value. 1256 * @see #encodeInt16(PositionedByteRange, short, Order) 1257 */ 1258 public static short decodeInt16(PositionedByteRange src) { 1259 final byte header = src.get(); 1260 assert header == FIXED_INT16 || header == DESCENDING.apply(FIXED_INT16); 1261 Order ord = header == FIXED_INT16 ? ASCENDING : DESCENDING; 1262 short val = (short) ((ord.apply(src.get()) ^ 0x80) & 0xff); 1263 val = (short) ((val << 8) + (ord.apply(src.get()) & 0xff)); 1264 return val; 1265 } 1266 1267 /** 1268 * Encode an {@code int32} value using the fixed-length encoding. 1269 * @return the number of bytes written. 1270 * @see #encodeInt64(PositionedByteRange, long, Order) 1271 * @see #decodeInt32(PositionedByteRange) 1272 */ 1273 public static int encodeInt32(PositionedByteRange dst, int val, Order ord) { 1274 final int offset = dst.getOffset(), start = dst.getPosition(); 1275 dst.put(FIXED_INT32).put((byte) ((val >> 24) ^ 0x80)).put((byte) (val >> 16)) 1276 .put((byte) (val >> 8)).put((byte) val); 1277 ord.apply(dst.getBytes(), offset + start, 5); 1278 return 5; 1279 } 1280 1281 /** 1282 * Decode an {@code int32} value. 1283 * @see #encodeInt32(PositionedByteRange, int, Order) 1284 */ 1285 public static int decodeInt32(PositionedByteRange src) { 1286 final byte header = src.get(); 1287 assert header == FIXED_INT32 || header == DESCENDING.apply(FIXED_INT32); 1288 Order ord = header == FIXED_INT32 ? ASCENDING : DESCENDING; 1289 int val = (ord.apply(src.get()) ^ 0x80) & 0xff; 1290 for (int i = 1; i < 4; i++) { 1291 val = (val << 8) + (ord.apply(src.get()) & 0xff); 1292 } 1293 return val; 1294 } 1295 1296 /** 1297 * Encode an {@code int64} value using the fixed-length encoding. 1298 * <p> 1299 * This format ensures that all longs sort in their natural order, as they would sort when using 1300 * signed long comparison. 1301 * </p> 1302 * <p> 1303 * All Longs are serialized to an 8-byte, fixed-width sortable byte format. Serialization is 1304 * performed by inverting the integer sign bit and writing the resulting bytes to the byte array 1305 * in big endian order. The encoded value is prefixed by the {@link #FIXED_INT64} header byte. 1306 * This encoding is designed to handle java language primitives and so Null values are NOT 1307 * supported by this implementation. 1308 * </p> 1309 * <p> 1310 * For example: 1311 * </p> 1312 * 1313 * <pre> 1314 * Input: 0x0000000000000005 (5) 1315 * Result: 0x288000000000000005 1316 * 1317 * Input: 0xfffffffffffffffb (-4) 1318 * Result: 0x280000000000000004 1319 * 1320 * Input: 0x7fffffffffffffff (Long.MAX_VALUE) 1321 * Result: 0x28ffffffffffffffff 1322 * 1323 * Input: 0x8000000000000000 (Long.MIN_VALUE) 1324 * Result: 0x287fffffffffffffff 1325 * </pre> 1326 * <p> 1327 * This encoding format, and much of this documentation string, is based on Orderly's 1328 * {@code FixedIntWritableRowKey}. 1329 * </p> 1330 * @return the number of bytes written. 1331 * @see #decodeInt64(PositionedByteRange) 1332 */ 1333 public static int encodeInt64(PositionedByteRange dst, long val, Order ord) { 1334 final int offset = dst.getOffset(), start = dst.getPosition(); 1335 dst.put(FIXED_INT64).put((byte) ((val >> 56) ^ 0x80)).put((byte) (val >> 48)) 1336 .put((byte) (val >> 40)).put((byte) (val >> 32)).put((byte) (val >> 24)) 1337 .put((byte) (val >> 16)).put((byte) (val >> 8)).put((byte) val); 1338 ord.apply(dst.getBytes(), offset + start, 9); 1339 return 9; 1340 } 1341 1342 /** 1343 * Decode an {@code int64} value. 1344 * @see #encodeInt64(PositionedByteRange, long, Order) 1345 */ 1346 public static long decodeInt64(PositionedByteRange src) { 1347 final byte header = src.get(); 1348 assert header == FIXED_INT64 || header == DESCENDING.apply(FIXED_INT64); 1349 Order ord = header == FIXED_INT64 ? ASCENDING : DESCENDING; 1350 long val = (ord.apply(src.get()) ^ 0x80) & 0xff; 1351 for (int i = 1; i < 8; i++) { 1352 val = (val << 8) + (ord.apply(src.get()) & 0xff); 1353 } 1354 return val; 1355 } 1356 1357 /** 1358 * Encode a 32-bit floating point value using the fixed-length encoding. Encoding format is 1359 * described at length in {@link #encodeFloat64(PositionedByteRange, double, Order)}. 1360 * @return the number of bytes written. 1361 * @see #decodeFloat32(PositionedByteRange) 1362 * @see #encodeFloat64(PositionedByteRange, double, Order) 1363 */ 1364 public static int encodeFloat32(PositionedByteRange dst, float val, Order ord) { 1365 final int offset = dst.getOffset(), start = dst.getPosition(); 1366 int i = Float.floatToIntBits(val); 1367 i ^= ((i >> (Integer.SIZE - 1)) | Integer.MIN_VALUE); 1368 dst.put(FIXED_FLOAT32).put((byte) (i >> 24)).put((byte) (i >> 16)).put((byte) (i >> 8)) 1369 .put((byte) i); 1370 ord.apply(dst.getBytes(), offset + start, 5); 1371 return 5; 1372 } 1373 1374 /** 1375 * Decode a 32-bit floating point value using the fixed-length encoding. 1376 * @see #encodeFloat32(PositionedByteRange, float, Order) 1377 */ 1378 public static float decodeFloat32(PositionedByteRange src) { 1379 final byte header = src.get(); 1380 assert header == FIXED_FLOAT32 || header == DESCENDING.apply(FIXED_FLOAT32); 1381 Order ord = header == FIXED_FLOAT32 ? ASCENDING : DESCENDING; 1382 int val = ord.apply(src.get()) & 0xff; 1383 for (int i = 1; i < 4; i++) { 1384 val = (val << 8) + (ord.apply(src.get()) & 0xff); 1385 } 1386 val ^= (~val >> (Integer.SIZE - 1)) | Integer.MIN_VALUE; 1387 return Float.intBitsToFloat(val); 1388 } 1389 1390 /** 1391 * Encode a 64-bit floating point value using the fixed-length encoding. 1392 * <p> 1393 * This format ensures the following total ordering of floating point values: 1394 * Double.NEGATIVE_INFINITY < -Double.MAX_VALUE < ... < -Double.MIN_VALUE < -0.0 < 1395 * +0.0; < Double.MIN_VALUE < ... < Double.MAX_VALUE < Double.POSITIVE_INFINITY < 1396 * Double.NaN 1397 * </p> 1398 * <p> 1399 * Floating point numbers are encoded as specified in IEEE 754. A 64-bit double precision float 1400 * consists of a sign bit, 11-bit unsigned exponent encoded in offset-1023 notation, and a 52-bit 1401 * significand. The format is described further in the 1402 * <a href="http://en.wikipedia.org/wiki/Double_precision"> Double Precision Floating Point 1403 * Wikipedia page</a> 1404 * </p> 1405 * <p> 1406 * The value of a normal float is -1 <sup>sign bit</sup> × 2<sup>exponent - 1023</sup> 1407 * × 1.significand 1408 * </p> 1409 * <p> 1410 * The IEE754 floating point format already preserves sort ordering for positive floating point 1411 * numbers when the raw bytes are compared in most significant byte order. This is discussed 1412 * further at 1413 * <a href= "http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm" > 1414 * http://www.cygnus-software.com/papers/comparingfloats/comparingfloats. htm</a> 1415 * </p> 1416 * <p> 1417 * Thus, we need only ensure that negative numbers sort in the the exact opposite order as 1418 * positive numbers (so that say, negative infinity is less than negative 1), and that all 1419 * negative numbers compare less than any positive number. To accomplish this, we invert the sign 1420 * bit of all floating point numbers, and we also invert the exponent and significand bits if the 1421 * floating point number was negative. 1422 * </p> 1423 * <p> 1424 * More specifically, we first store the floating point bits into a 64-bit long {@code l} using 1425 * {@link Double#doubleToLongBits}. This method collapses all NaNs into a single, canonical NaN 1426 * value but otherwise leaves the bits unchanged. We then compute 1427 * </p> 1428 * 1429 * <pre> 1430 * l ˆ= (l >> (Long.SIZE - 1)) | Long.MIN_SIZE 1431 * </pre> 1432 * <p> 1433 * which inverts the sign bit and XOR's all other bits with the sign bit itself. Comparing the raw 1434 * bytes of {@code l} in most significant byte order is equivalent to performing a double 1435 * precision floating point comparison on the underlying bits (ignoring NaN comparisons, as NaNs 1436 * don't compare equal to anything when performing floating point comparisons). 1437 * </p> 1438 * <p> 1439 * The resulting long integer is then converted into a byte array by serializing the long one byte 1440 * at a time in most significant byte order. The serialized integer is prefixed by a single header 1441 * byte. All serialized values are 9 bytes in length. 1442 * </p> 1443 * <p> 1444 * This encoding format, and much of this highly detailed documentation string, is based on 1445 * Orderly's {@code DoubleWritableRowKey}. 1446 * </p> 1447 * @return the number of bytes written. 1448 * @see #decodeFloat64(PositionedByteRange) 1449 */ 1450 public static int encodeFloat64(PositionedByteRange dst, double val, Order ord) { 1451 final int offset = dst.getOffset(), start = dst.getPosition(); 1452 long lng = Double.doubleToLongBits(val); 1453 lng ^= ((lng >> (Long.SIZE - 1)) | Long.MIN_VALUE); 1454 dst.put(FIXED_FLOAT64).put((byte) (lng >> 56)).put((byte) (lng >> 48)).put((byte) (lng >> 40)) 1455 .put((byte) (lng >> 32)).put((byte) (lng >> 24)).put((byte) (lng >> 16)) 1456 .put((byte) (lng >> 8)).put((byte) lng); 1457 ord.apply(dst.getBytes(), offset + start, 9); 1458 return 9; 1459 } 1460 1461 /** 1462 * Decode a 64-bit floating point value using the fixed-length encoding. 1463 * @see #encodeFloat64(PositionedByteRange, double, Order) 1464 */ 1465 public static double decodeFloat64(PositionedByteRange src) { 1466 final byte header = src.get(); 1467 assert header == FIXED_FLOAT64 || header == DESCENDING.apply(FIXED_FLOAT64); 1468 Order ord = header == FIXED_FLOAT64 ? ASCENDING : DESCENDING; 1469 long val = ord.apply(src.get()) & 0xff; 1470 for (int i = 1; i < 8; i++) { 1471 val = (val << 8) + (ord.apply(src.get()) & 0xff); 1472 } 1473 val ^= (~val >> (Long.SIZE - 1)) | Long.MIN_VALUE; 1474 return Double.longBitsToDouble(val); 1475 } 1476 1477 /** 1478 * Returns true when {@code src} appears to be positioned an encoded value, false otherwise. 1479 */ 1480 public static boolean isEncodedValue(PositionedByteRange src) { 1481 return isNull(src) || isNumeric(src) || isFixedInt8(src) || isFixedInt16(src) 1482 || isFixedInt32(src) || isFixedInt64(src) || isFixedFloat32(src) || isFixedFloat64(src) 1483 || isText(src) || isBlobCopy(src) || isBlobVar(src); 1484 } 1485 1486 /** 1487 * Return true when the next encoded value in {@code src} is null, false otherwise. 1488 */ 1489 public static boolean isNull(PositionedByteRange src) { 1490 return NULL == (-1 == Integer.signum(src.peek()) ? DESCENDING : ASCENDING).apply(src.peek()); 1491 } 1492 1493 /** 1494 * Return true when the next encoded value in {@code src} uses Numeric encoding, false otherwise. 1495 * {@code NaN}, {@code +/-Inf} are valid Numeric values. 1496 */ 1497 public static boolean isNumeric(PositionedByteRange src) { 1498 byte x = (-1 == Integer.signum(src.peek()) ? DESCENDING : ASCENDING).apply(src.peek()); 1499 return x >= NEG_INF && x <= NAN; 1500 } 1501 1502 /** 1503 * Return true when the next encoded value in {@code src} uses Numeric encoding and is 1504 * {@code Infinite}, false otherwise. 1505 */ 1506 public static boolean isNumericInfinite(PositionedByteRange src) { 1507 byte x = (-1 == Integer.signum(src.peek()) ? DESCENDING : ASCENDING).apply(src.peek()); 1508 return NEG_INF == x || POS_INF == x; 1509 } 1510 1511 /** 1512 * Return true when the next encoded value in {@code src} uses Numeric encoding and is 1513 * {@code NaN}, false otherwise. 1514 */ 1515 public static boolean isNumericNaN(PositionedByteRange src) { 1516 return NAN == (-1 == Integer.signum(src.peek()) ? DESCENDING : ASCENDING).apply(src.peek()); 1517 } 1518 1519 /** 1520 * Return true when the next encoded value in {@code src} uses Numeric encoding and is {@code 0}, 1521 * false otherwise. 1522 */ 1523 public static boolean isNumericZero(PositionedByteRange src) { 1524 return ZERO == (-1 == Integer.signum(src.peek()) ? DESCENDING : ASCENDING).apply(src.peek()); 1525 } 1526 1527 /** 1528 * Return true when the next encoded value in {@code src} uses fixed-width Int8 encoding, false 1529 * otherwise. 1530 */ 1531 public static boolean isFixedInt8(PositionedByteRange src) { 1532 return FIXED_INT8 1533 == (-1 == Integer.signum(src.peek()) ? DESCENDING : ASCENDING).apply(src.peek()); 1534 } 1535 1536 /** 1537 * Return true when the next encoded value in {@code src} uses fixed-width Int16 encoding, false 1538 * otherwise. 1539 */ 1540 public static boolean isFixedInt16(PositionedByteRange src) { 1541 return FIXED_INT16 1542 == (-1 == Integer.signum(src.peek()) ? DESCENDING : ASCENDING).apply(src.peek()); 1543 } 1544 1545 /** 1546 * Return true when the next encoded value in {@code src} uses fixed-width Int32 encoding, false 1547 * otherwise. 1548 */ 1549 public static boolean isFixedInt32(PositionedByteRange src) { 1550 return FIXED_INT32 1551 == (-1 == Integer.signum(src.peek()) ? DESCENDING : ASCENDING).apply(src.peek()); 1552 } 1553 1554 /** 1555 * Return true when the next encoded value in {@code src} uses fixed-width Int64 encoding, false 1556 * otherwise. 1557 */ 1558 public static boolean isFixedInt64(PositionedByteRange src) { 1559 return FIXED_INT64 1560 == (-1 == Integer.signum(src.peek()) ? DESCENDING : ASCENDING).apply(src.peek()); 1561 } 1562 1563 /** 1564 * Return true when the next encoded value in {@code src} uses fixed-width Float32 encoding, false 1565 * otherwise. 1566 */ 1567 public static boolean isFixedFloat32(PositionedByteRange src) { 1568 return FIXED_FLOAT32 1569 == (-1 == Integer.signum(src.peek()) ? DESCENDING : ASCENDING).apply(src.peek()); 1570 } 1571 1572 /** 1573 * Return true when the next encoded value in {@code src} uses fixed-width Float64 encoding, false 1574 * otherwise. 1575 */ 1576 public static boolean isFixedFloat64(PositionedByteRange src) { 1577 return FIXED_FLOAT64 1578 == (-1 == Integer.signum(src.peek()) ? DESCENDING : ASCENDING).apply(src.peek()); 1579 } 1580 1581 /** 1582 * Return true when the next encoded value in {@code src} uses Text encoding, false otherwise. 1583 */ 1584 public static boolean isText(PositionedByteRange src) { 1585 return TEXT == (-1 == Integer.signum(src.peek()) ? DESCENDING : ASCENDING).apply(src.peek()); 1586 } 1587 1588 /** 1589 * Return true when the next encoded value in {@code src} uses BlobVar encoding, false otherwise. 1590 */ 1591 public static boolean isBlobVar(PositionedByteRange src) { 1592 return BLOB_VAR 1593 == (-1 == Integer.signum(src.peek()) ? DESCENDING : ASCENDING).apply(src.peek()); 1594 } 1595 1596 /** 1597 * Return true when the next encoded value in {@code src} uses BlobCopy encoding, false otherwise. 1598 */ 1599 public static boolean isBlobCopy(PositionedByteRange src) { 1600 return BLOB_COPY 1601 == (-1 == Integer.signum(src.peek()) ? DESCENDING : ASCENDING).apply(src.peek()); 1602 } 1603 1604 /** 1605 * Skip {@code buff}'s position forward over one encoded value. 1606 * @return number of bytes skipped. 1607 */ 1608 public static int skip(PositionedByteRange src) { 1609 final int start = src.getPosition(); 1610 byte header = src.get(); 1611 Order ord = (-1 == Integer.signum(header)) ? DESCENDING : ASCENDING; 1612 header = ord.apply(header); 1613 1614 switch (header) { 1615 case NULL: 1616 case NEG_INF: 1617 return 1; 1618 case NEG_LARGE: /* Large negative number: 0x08, ~E, ~M */ 1619 skipVaruint64(src, DESCENDING != ord); 1620 skipSignificand(src, DESCENDING != ord); 1621 return src.getPosition() - start; 1622 case NEG_MED_MIN: /* Medium negative number: 0x13-E, ~M */ 1623 case NEG_MED_MIN + 0x01: 1624 case NEG_MED_MIN + 0x02: 1625 case NEG_MED_MIN + 0x03: 1626 case NEG_MED_MIN + 0x04: 1627 case NEG_MED_MIN + 0x05: 1628 case NEG_MED_MIN + 0x06: 1629 case NEG_MED_MIN + 0x07: 1630 case NEG_MED_MIN + 0x08: 1631 case NEG_MED_MIN + 0x09: 1632 case NEG_MED_MAX: 1633 skipSignificand(src, DESCENDING != ord); 1634 return src.getPosition() - start; 1635 case NEG_SMALL: /* Small negative number: 0x14, -E, ~M */ 1636 skipVaruint64(src, DESCENDING == ord); 1637 skipSignificand(src, DESCENDING != ord); 1638 return src.getPosition() - start; 1639 case ZERO: 1640 return 1; 1641 case POS_SMALL: /* Small positive number: 0x16, ~-E, M */ 1642 skipVaruint64(src, DESCENDING != ord); 1643 skipSignificand(src, DESCENDING == ord); 1644 return src.getPosition() - start; 1645 case POS_MED_MIN: /* Medium positive number: 0x17+E, M */ 1646 case POS_MED_MIN + 0x01: 1647 case POS_MED_MIN + 0x02: 1648 case POS_MED_MIN + 0x03: 1649 case POS_MED_MIN + 0x04: 1650 case POS_MED_MIN + 0x05: 1651 case POS_MED_MIN + 0x06: 1652 case POS_MED_MIN + 0x07: 1653 case POS_MED_MIN + 0x08: 1654 case POS_MED_MIN + 0x09: 1655 case POS_MED_MAX: 1656 skipSignificand(src, DESCENDING == ord); 1657 return src.getPosition() - start; 1658 case POS_LARGE: /* Large positive number: 0x22, E, M */ 1659 skipVaruint64(src, DESCENDING == ord); 1660 skipSignificand(src, DESCENDING == ord); 1661 return src.getPosition() - start; 1662 case POS_INF: 1663 return 1; 1664 case NAN: 1665 return 1; 1666 case FIXED_INT8: 1667 src.setPosition(src.getPosition() + 1); 1668 return src.getPosition() - start; 1669 case FIXED_INT16: 1670 src.setPosition(src.getPosition() + 2); 1671 return src.getPosition() - start; 1672 case FIXED_INT32: 1673 src.setPosition(src.getPosition() + 4); 1674 return src.getPosition() - start; 1675 case FIXED_INT64: 1676 src.setPosition(src.getPosition() + 8); 1677 return src.getPosition() - start; 1678 case FIXED_FLOAT32: 1679 src.setPosition(src.getPosition() + 4); 1680 return src.getPosition() - start; 1681 case FIXED_FLOAT64: 1682 src.setPosition(src.getPosition() + 8); 1683 return src.getPosition() - start; 1684 case TEXT: 1685 // for null-terminated values, skip to the end. 1686 do { 1687 header = ord.apply(src.get()); 1688 } while (header != TERM); 1689 return src.getPosition() - start; 1690 case BLOB_VAR: 1691 // read until we find a 0 in the MSB 1692 do { 1693 header = ord.apply(src.get()); 1694 } while ((byte) (header & 0x80) != TERM); 1695 return src.getPosition() - start; 1696 case BLOB_COPY: 1697 if (Order.DESCENDING == ord) { 1698 // if descending, read to termination byte. 1699 do { 1700 header = ord.apply(src.get()); 1701 } while (header != TERM); 1702 return src.getPosition() - start; 1703 } else { 1704 // otherwise, just skip to the end. 1705 src.setPosition(src.getLength()); 1706 return src.getPosition() - start; 1707 } 1708 default: 1709 throw unexpectedHeader(header); 1710 } 1711 } 1712 1713 /** 1714 * Return the number of encoded entries remaining in {@code buff}. The state of {@code buff} is 1715 * not modified through use of this method. 1716 */ 1717 public static int length(PositionedByteRange buff) { 1718 PositionedByteRange b = 1719 new SimplePositionedMutableByteRange(buff.getBytes(), buff.getOffset(), buff.getLength()); 1720 b.setPosition(buff.getPosition()); 1721 int cnt = 0; 1722 for (; isEncodedValue(b); skip(b), cnt++) 1723 ; 1724 return cnt; 1725 } 1726}