@InterfaceAudience.Public public abstract class TableInputFormatBase extends org.apache.hadoop.mapreduce.InputFormat<ImmutableBytesWritable,Result>
TableInputFormat
s. Receives a Connection
, a TableName
, an
Scan
instance that defines the input columns etc. Subclasses may use other
TableRecordReader implementations. Subclasses MUST ensure initializeTable(Connection, TableName)
is called for an instance to function properly. Each of the entry points to this class used by
the MapReduce framework, createRecordReader(InputSplit, TaskAttemptContext)
and
getSplits(JobContext)
, will call initialize(JobContext)
as a convenient
centralized location to handle retrieving the necessary configuration information. If your
subclass overrides either of these methods, either call the parent version or call initialize
yourself.
An example of a subclass:
class ExampleTIF extends TableInputFormatBase { @Override protected void initialize(JobContext context) throws IOException { // We are responsible for the lifecycle of this connection until we hand it over in // initializeTable. Connection connection = ConnectionFactory.createConnection(HBaseConfiguration.create( job.getConfiguration())); TableName tableName = TableName.valueOf("exampleTable"); // mandatory. once passed here, TableInputFormatBase will handle closing the connection. initializeTable(connection, tableName); byte[][] inputColumns = new byte [][] { Bytes.toBytes("columnA"), Bytes.toBytes("columnB") }; // optional, by default we'll get everything for the table. Scan scan = new Scan(); for (byte[] family : inputColumns) { scan.addFamily(family); } Filter exampleFilter = new RowFilter(CompareOp.EQUAL, new RegexStringComparator("aa.*")); scan.setFilter(exampleFilter); setScan(scan); } }The number of InputSplits(mappers) match the number of regions in a table by default. Set "hbase.mapreduce.tableinput.mappers.per.region" to specify how many mappers per region, set this property will disable autobalance below.\ Set "hbase.mapreduce.tif.input.autobalance" to enable autobalance, hbase will assign mappers based on average region size; For regions, whose size larger than average region size may assigned more mappers, and for smaller one, they may group together to use one mapper. If actual average region size is too big, like 50G, it is not good to only assign 1 mapper for those large regions. Use "hbase.mapreduce.tif.ave.regionsize" to set max average region size when enable "autobalanece", default mas average region size is 8G.
Modifier and Type | Field and Description |
---|---|
static String |
MAPREDUCE_INPUT_AUTOBALANCE
Specify if we enable auto-balance to set number of mappers in M/R jobs.
|
static String |
MAX_AVERAGE_REGION_SIZE
In auto-balance, we split input by ave region size, if calculated region size is too big, we
can set it.
|
static String |
NUM_MAPPERS_PER_REGION
Set the number of Mappers for each region, all regions have same number of Mappers
|
Constructor and Description |
---|
TableInputFormatBase() |
Modifier and Type | Method and Description |
---|---|
List<org.apache.hadoop.mapreduce.InputSplit> |
calculateAutoBalancedSplits(List<org.apache.hadoop.mapreduce.InputSplit> splits,
long maxAverageRegionSize)
Calculates the number of MapReduce input splits for the map tasks.
|
protected void |
closeTable()
Close the Table and related objects that were initialized via
initializeTable(Connection, TableName) . |
protected List<org.apache.hadoop.mapreduce.InputSplit> |
createNInputSplitsUniform(org.apache.hadoop.mapreduce.InputSplit split,
int n)
Create n splits for one InputSplit, For now only support uniform distribution
|
org.apache.hadoop.mapreduce.RecordReader<ImmutableBytesWritable,Result> |
createRecordReader(org.apache.hadoop.mapreduce.InputSplit split,
org.apache.hadoop.mapreduce.TaskAttemptContext context)
Builds a
TableRecordReader . |
protected Admin |
getAdmin()
Allows subclasses to get the
Admin . |
protected RegionLocator |
getRegionLocator()
Allows subclasses to get the
RegionLocator . |
Scan |
getScan()
Gets the scan defining the actual details like columns etc.
|
List<org.apache.hadoop.mapreduce.InputSplit> |
getSplits(org.apache.hadoop.mapreduce.JobContext context)
Calculates the splits that will serve as input for the map tasks.
|
protected Pair<byte[][],byte[][]> |
getStartEndKeys() |
protected Table |
getTable()
Allows subclasses to get the
Table . |
protected boolean |
includeRegionInSplit(byte[] startKey,
byte[] endKey)
Test if the given region is to be included in the InputSplit while splitting the regions of a
table.
|
protected void |
initialize(org.apache.hadoop.mapreduce.JobContext context)
Handle subclass specific set up.
|
protected void |
initializeTable(Connection connection,
TableName tableName)
Allows subclasses to initialize the table information.
|
void |
setScan(Scan scan)
Sets the scan defining the actual details like columns etc.
|
protected void |
setTableRecordReader(TableRecordReader tableRecordReader)
Allows subclasses to set the
TableRecordReader . |
public static final String MAPREDUCE_INPUT_AUTOBALANCE
public static final String MAX_AVERAGE_REGION_SIZE
public static final String NUM_MAPPERS_PER_REGION
public TableInputFormatBase()
public org.apache.hadoop.mapreduce.RecordReader<ImmutableBytesWritable,Result> createRecordReader(org.apache.hadoop.mapreduce.InputSplit split, org.apache.hadoop.mapreduce.TaskAttemptContext context) throws IOException
TableRecordReader
. If no TableRecordReader
was provided, uses the
default.createRecordReader
in class org.apache.hadoop.mapreduce.InputFormat<ImmutableBytesWritable,Result>
split
- The split to work with.context
- The current context.IOException
- When creating the reader fails.InputFormat.createRecordReader(
org.apache.hadoop.mapreduce.InputSplit, org.apache.hadoop.mapreduce.TaskAttemptContext)
protected Pair<byte[][],byte[][]> getStartEndKeys() throws IOException
IOException
public List<org.apache.hadoop.mapreduce.InputSplit> getSplits(org.apache.hadoop.mapreduce.JobContext context) throws IOException
getSplits
in class org.apache.hadoop.mapreduce.InputFormat<ImmutableBytesWritable,Result>
context
- The current job context.IOException
- When creating the list of splits fails.InputFormat.getSplits( org.apache.hadoop.mapreduce.JobContext)
protected List<org.apache.hadoop.mapreduce.InputSplit> createNInputSplitsUniform(org.apache.hadoop.mapreduce.InputSplit split, int n) throws org.apache.hadoop.hbase.exceptions.IllegalArgumentIOException
split
- A TableSplit corresponding to a range of rowkeysn
- Number of ranges after splitting. Pass 1 means no split for the range Pass 2 if
you want to split the range in two;org.apache.hadoop.hbase.exceptions.IllegalArgumentIOException
- throws IllegalArgumentIOExceptionpublic List<org.apache.hadoop.mapreduce.InputSplit> calculateAutoBalancedSplits(List<org.apache.hadoop.mapreduce.InputSplit> splits, long maxAverageRegionSize) throws IOException
splits
- The list of input splits before balance.maxAverageRegionSize
- max Average region size for one mapperIOException
- When creating the list of splits fails.InputFormat.getSplits( org.apache.hadoop.mapreduce.JobContext)
protected boolean includeRegionInSplit(byte[] startKey, byte[] endKey)
This optimization is effective when there is a specific reasoning to exclude an entire region
from the M-R job, (and hence, not contributing to the InputSplit), given the start and end keys
of the same.
Useful when we need to remember the last-processed top record and revisit the [last, current)
interval for M-R processing, continuously. In addition to reducing InputSplits, reduces the
load on the region server as well, due to the ordering of the keys.
Note: It is possible that endKey.length() == 0
, for the last (recent) region.
Override this method, if you want to bulk exclude regions altogether from M-R. By default, no
region is excluded( i.e. all regions are included).
startKey
- Start key of the regionendKey
- End key of the regionprotected RegionLocator getRegionLocator()
RegionLocator
.protected void initializeTable(Connection connection, TableName tableName) throws IOException
connection
- The Connection to the HBase cluster. MUST be unmanaged. We will close.tableName
- The TableName
of the table to process. nIOException
public Scan getScan()
public void setScan(Scan scan)
scan
- The scan to set.protected void setTableRecordReader(TableRecordReader tableRecordReader)
TableRecordReader
.tableRecordReader
- A different TableRecordReader
implementation.protected void initialize(org.apache.hadoop.mapreduce.JobContext context) throws IOException
createRecordReader(InputSplit, TaskAttemptContext)
and getSplits(JobContext)
,
will call initialize(JobContext)
as a convenient centralized location to handle
retrieving the necessary configuration information and calling
initializeTable(Connection, TableName)
. Subclasses should implement their initialize
call such that it is safe to call multiple times. The current TableInputFormatBase
implementation relies on a non-null table reference to decide if an initialize call is needed,
but this behavior may change in the future. In particular, it is critical that initializeTable
not be called multiple times since this will leak Connection instances.IOException
protected void closeTable() throws IOException
initializeTable(Connection, TableName)
. nIOException
Copyright © 2007–2020 The Apache Software Foundation. All rights reserved.