2.4. Configuration Files

2.4.1. hbase-site.xml and hbase-default.xml

Just as in Hadoop where you add site-specific HDFS configuration to the hdfs-site.xml file, for HBase, site specific customizations go into the file conf/hbase-site.xml. For the list of configurable properties, see HBase Default Configuration below or view the raw hbase-default.xml source file in the HBase source code at src/main/resources.

Not all configuration options make it out to hbase-default.xml. Configuration that it is thought rare anyone would change can exist only in code; the only way to turn up such configurations is via a reading of the source code itself.

Currently, changes here will require a cluster restart for HBase to notice the change.

HBase Default Configuration

The documentation below is generated using the default hbase configuration file, hbase-default.xml, as source.

hbase.tmp.dir

Temporary directory on the local filesystem. Change this setting to point to a location more permanent than '/tmp', the usual resolve for java.io.tmpdir, as the '/tmp' directory is cleared on machine restart.

Default. ${java.io.tmpdir}/hbase-${user.name}

hbase.rootdir

The directory shared by region servers and into which HBase persists. The URL should be 'fully-qualified' to include the filesystem scheme. For example, to specify the HDFS directory '/hbase' where the HDFS instance's namenode is running at namenode.example.org on port 9000, set this value to: hdfs://namenode.example.org:9000/hbase. By default, we write to whatever ${hbase.tmp.dir} is set too -- usually /tmp -- so change this configuration or else all data will be lost on machine restart.

Default. ${hbase.tmp.dir}/hbase

hbase.cluster.distributed

The mode the cluster will be in. Possible values are false for standalone mode and true for distributed mode. If false, startup will run all HBase and ZooKeeper daemons together in the one JVM.

Default. false

hbase.zookeeper.quorum

Comma separated list of servers in the ZooKeeper ensemble (This config. should have been named hbase.zookeeper.ensemble). For example, "host1.mydomain.com,host2.mydomain.com,host3.mydomain.com". By default this is set to localhost for local and pseudo-distributed modes of operation. For a fully-distributed setup, this should be set to a full list of ZooKeeper ensemble servers. If HBASE_MANAGES_ZK is set in hbase-env.sh this is the list of servers which hbase will start/stop ZooKeeper on as part of cluster start/stop. Client-side, we will take this list of ensemble members and put it together with the hbase.zookeeper.clientPort config. and pass it into zookeeper constructor as the connectString parameter.

Default. localhost

hbase.local.dir

Directory on the local filesystem to be used as a local storage.

Default. ${hbase.tmp.dir}/local/

hbase.master.info.port

The port for the HBase Master web UI. Set to -1 if you do not want a UI instance run.

Default. 16010

hbase.master.info.bindAddress

The bind address for the HBase Master web UI

Default. 0.0.0.0

hbase.master.logcleaner.plugins

A comma-separated list of BaseLogCleanerDelegate invoked by the LogsCleaner service. These WAL/HLog cleaners are called in order, so put the HLog cleaner that prunes the most HLog files in front. To implement your own BaseLogCleanerDelegate, just put it in HBase's classpath and add the fully qualified class name here. Always add the above default log cleaners in the list.

Default. org.apache.hadoop.hbase.master.cleaner.TimeToLiveLogCleaner

hbase.master.logcleaner.ttl

Maximum time a HLog can stay in the .oldlogdir directory, after which it will be cleaned by a Master thread.

Default. 600000

hbase.master.hfilecleaner.plugins

A comma-separated list of BaseHFileCleanerDelegate invoked by the HFileCleaner service. These HFiles cleaners are called in order, so put the cleaner that prunes the most files in front. To implement your own BaseHFileCleanerDelegate, just put it in HBase's classpath and add the fully qualified class name here. Always add the above default log cleaners in the list as they will be overwritten in hbase-site.xml.

Default. org.apache.hadoop.hbase.master.cleaner.TimeToLiveHFileCleaner

hbase.master.catalog.timeout

Timeout value for the Catalog Janitor from the master to META.

Default. 600000

hbase.master.infoserver.redirect

Whether or not the Master listens to the Master web UI port (hbase.master.info.port) and redirects requests to the web UI server shared by the Master and RegionServer.

Default. true

hbase.regionserver.port

The port the HBase RegionServer binds to.

Default. 16020

hbase.regionserver.info.port

The port for the HBase RegionServer web UI Set to -1 if you do not want the RegionServer UI to run.

Default. 16030

hbase.regionserver.info.bindAddress

The address for the HBase RegionServer web UI

Default. 0.0.0.0

hbase.regionserver.info.port.auto

Whether or not the Master or RegionServer UI should search for a port to bind to. Enables automatic port search if hbase.regionserver.info.port is already in use. Useful for testing, turned off by default.

Default. false

hbase.regionserver.handler.count

Count of RPC Listener instances spun up on RegionServers. Same property is used by the Master for count of master handlers.

Default. 30

hbase.ipc.server.callqueue.handler.factor

Factor to determine the number of call queues. A value of 0 means a single queue shared between all the handlers. A value of 1 means that each handler has its own queue.

Default. 0.1

hbase.ipc.server.callqueue.read.ratio

Split the call queues into read and write queues. The specified interval (which should be between 0.0 and 1.0) will be multiplied by the number of call queues. A value of 0 indicate to not split the call queues, meaning that both read and write requests will be pushed to the same set of queues. A value lower than 0.5 means that there will be less read queues than write queues. A value of 0.5 means there will be the same number of read and write queues. A value greater than 0.5 means that there will be more read queues than write queues. A value of 1.0 means that all the queues except one are used to dispatch read requests. Example: Given the total number of call queues being 10 a read.ratio of 0 means that: the 10 queues will contain both read/write requests. a read.ratio of 0.3 means that: 3 queues will contain only read requests and 7 queues will contain only write requests. a read.ratio of 0.5 means that: 5 queues will contain only read requests and 5 queues will contain only write requests. a read.ratio of 0.8 means that: 8 queues will contain only read requests and 2 queues will contain only write requests. a read.ratio of 1 means that: 9 queues will contain only read requests and 1 queues will contain only write requests.

Default. 0

hbase.ipc.server.callqueue.scan.ratio

Given the number of read call queues, calculated from the total number of call queues multiplied by the callqueue.read.ratio, the scan.ratio property will split the read call queues into small-read and long-read queues. A value lower than 0.5 means that there will be less long-read queues than short-read queues. A value of 0.5 means that there will be the same number of short-read and long-read queues. A value greater than 0.5 means that there will be more long-read queues than short-read queues A value of 0 or 1 indicate to use the same set of queues for gets and scans. Example: Given the total number of read call queues being 8 a scan.ratio of 0 or 1 means that: 8 queues will contain both long and short read requests. a scan.ratio of 0.3 means that: 2 queues will contain only long-read requests and 6 queues will contain only short-read requests. a scan.ratio of 0.5 means that: 4 queues will contain only long-read requests and 4 queues will contain only short-read requests. a scan.ratio of 0.8 means that: 6 queues will contain only long-read requests and 2 queues will contain only short-read requests.

Default. 0

hbase.regionserver.msginterval

Interval between messages from the RegionServer to Master in milliseconds.

Default. 3000

hbase.regionserver.regionSplitLimit

Limit for the number of regions after which no more region splitting should take place. This is not a hard limit for the number of regions but acts as a guideline for the regionserver to stop splitting after a certain limit. Default is MAX_INT; i.e. do not block splitting.

Default. 2147483647

hbase.regionserver.logroll.period

Period at which we will roll the commit log regardless of how many edits it has.

Default. 3600000

hbase.regionserver.logroll.errors.tolerated

The number of consecutive WAL close errors we will allow before triggering a server abort. A setting of 0 will cause the region server to abort if closing the current WAL writer fails during log rolling. Even a small value (2 or 3) will allow a region server to ride over transient HDFS errors.

Default. 2

hbase.regionserver.hlog.reader.impl

The HLog file reader implementation.

Default. org.apache.hadoop.hbase.regionserver.wal.ProtobufLogReader

hbase.regionserver.hlog.writer.impl

The HLog file writer implementation.

Default. org.apache.hadoop.hbase.regionserver.wal.ProtobufLogWriter

hbase.master.distributed.log.replay

Enable 'distributed log replay' as default engine splitting WAL files on server crash. This default is new in hbase 1.0. To fall back to the old mode 'distributed log splitter', set the value to 'false'. 'Disributed log replay' improves MTTR because it does not write intermediate files. 'DLR' required that 'hfile.format.version' be set to version 3 or higher.

Default. true

hbase.regionserver.global.memstore.size

Maximum size of all memstores in a region server before new updates are blocked and flushes are forced. Defaults to 40% of heap. Updates are blocked and flushes are forced until size of all memstores in a region server hits hbase.regionserver.global.memstore.size.lower.limit.

Default. 0.4

hbase.regionserver.global.memstore.size.lower.limit

Maximum size of all memstores in a region server before flushes are forced. Defaults to 95% of hbase.regionserver.global.memstore.size. A 100% value for this value causes the minimum possible flushing to occur when updates are blocked due to memstore limiting.

Default. 0.95

hbase.regionserver.optionalcacheflushinterval

Maximum amount of time an edit lives in memory before being automatically flushed. Default 1 hour. Set it to 0 to disable automatic flushing.

Default. 3600000

hbase.regionserver.catalog.timeout

Timeout value for the Catalog Janitor from the regionserver to META.

Default. 600000

hbase.regionserver.dns.interface

The name of the Network Interface from which a region server should report its IP address.

Default. default

hbase.regionserver.dns.nameserver

The host name or IP address of the name server (DNS) which a region server should use to determine the host name used by the master for communication and display purposes.

Default. default

hbase.regionserver.region.split.policy

A split policy determines when a region should be split. The various other split policies that are available currently are ConstantSizeRegionSplitPolicy, DisabledRegionSplitPolicy, DelimitedKeyPrefixRegionSplitPolicy, KeyPrefixRegionSplitPolicy etc.

Default. org.apache.hadoop.hbase.regionserver.IncreasingToUpperBoundRegionSplitPolicy

zookeeper.session.timeout

ZooKeeper session timeout in milliseconds. It is used in two different ways. First, this value is used in the ZK client that HBase uses to connect to the ensemble. It is also used by HBase when it starts a ZK server and it is passed as the 'maxSessionTimeout'. See http://hadoop.apache.org/zookeeper/docs/current/zookeeperProgrammers.html#ch_zkSessions. For example, if a HBase region server connects to a ZK ensemble that's also managed by HBase, then the session timeout will be the one specified by this configuration. But, a region server that connects to an ensemble managed with a different configuration will be subjected that ensemble's maxSessionTimeout. So, even though HBase might propose using 90 seconds, the ensemble can have a max timeout lower than this and it will take precedence. The current default that ZK ships with is 40 seconds, which is lower than HBase's.

Default. 90000

zookeeper.znode.parent

Root ZNode for HBase in ZooKeeper. All of HBase's ZooKeeper files that are configured with a relative path will go under this node. By default, all of HBase's ZooKeeper file path are configured with a relative path, so they will all go under this directory unless changed.

Default. /hbase

zookeeper.znode.rootserver

Path to ZNode holding root region location. This is written by the master and read by clients and region servers. If a relative path is given, the parent folder will be ${zookeeper.znode.parent}. By default, this means the root location is stored at /hbase/root-region-server.

Default. root-region-server

zookeeper.znode.acl.parent

Root ZNode for access control lists.

Default. acl

hbase.zookeeper.dns.interface

The name of the Network Interface from which a ZooKeeper server should report its IP address.

Default. default

hbase.zookeeper.dns.nameserver

The host name or IP address of the name server (DNS) which a ZooKeeper server should use to determine the host name used by the master for communication and display purposes.

Default. default

hbase.zookeeper.peerport

Port used by ZooKeeper peers to talk to each other. See http://hadoop.apache.org/zookeeper/docs/r3.1.1/zookeeperStarted.html#sc_RunningReplicatedZooKeeper for more information.

Default. 2888

hbase.zookeeper.leaderport

Port used by ZooKeeper for leader election. See http://hadoop.apache.org/zookeeper/docs/r3.1.1/zookeeperStarted.html#sc_RunningReplicatedZooKeeper for more information.

Default. 3888

hbase.zookeeper.useMulti

Instructs HBase to make use of ZooKeeper's multi-update functionality. This allows certain ZooKeeper operations to complete more quickly and prevents some issues with rare Replication failure scenarios (see the release note of HBASE-2611 for an example). IMPORTANT: only set this to true if all ZooKeeper servers in the cluster are on version 3.4+ and will not be downgraded. ZooKeeper versions before 3.4 do not support multi-update and will not fail gracefully if multi-update is invoked (see ZOOKEEPER-1495).

Default. true

hbase.config.read.zookeeper.config

Set to true to allow HBaseConfiguration to read the zoo.cfg file for ZooKeeper properties. Switching this to true is not recommended, since the functionality of reading ZK properties from a zoo.cfg file has been deprecated.

Default. false

hbase.zookeeper.property.initLimit

Property from ZooKeeper's config zoo.cfg. The number of ticks that the initial synchronization phase can take.

Default. 10

hbase.zookeeper.property.syncLimit

Property from ZooKeeper's config zoo.cfg. The number of ticks that can pass between sending a request and getting an acknowledgment.

Default. 5

hbase.zookeeper.property.dataDir

Property from ZooKeeper's config zoo.cfg. The directory where the snapshot is stored.

Default. ${hbase.tmp.dir}/zookeeper

hbase.zookeeper.property.clientPort

Property from ZooKeeper's config zoo.cfg. The port at which the clients will connect.

Default. 2181

hbase.zookeeper.property.maxClientCnxns

Property from ZooKeeper's config zoo.cfg. Limit on number of concurrent connections (at the socket level) that a single client, identified by IP address, may make to a single member of the ZooKeeper ensemble. Set high to avoid zk connection issues running standalone and pseudo-distributed.

Default. 300

hbase.client.write.buffer

Default size of the HTable client write buffer in bytes. A bigger buffer takes more memory -- on both the client and server side since server instantiates the passed write buffer to process it -- but a larger buffer size reduces the number of RPCs made. For an estimate of server-side memory-used, evaluate hbase.client.write.buffer * hbase.regionserver.handler.count

Default. 2097152

hbase.client.pause

General client pause value. Used mostly as value to wait before running a retry of a failed get, region lookup, etc. See hbase.client.retries.number for description of how we backoff from this initial pause amount and how this pause works w/ retries.

Default. 100

hbase.client.retries.number

Maximum retries. Used as maximum for all retryable operations such as the getting of a cell's value, starting a row update, etc. Retry interval is a rough function based on hbase.client.pause. At first we retry at this interval but then with backoff, we pretty quickly reach retrying every ten seconds. See HConstants#RETRY_BACKOFF for how the backup ramps up. Change this setting and hbase.client.pause to suit your workload.

Default. 35

hbase.client.max.total.tasks

The maximum number of concurrent tasks a single HTable instance will send to the cluster.

Default. 100

hbase.client.max.perserver.tasks

The maximum number of concurrent tasks a single HTable instance will send to a single region server.

Default. 5

hbase.client.max.perregion.tasks

The maximum number of concurrent connections the client will maintain to a single Region. That is, if there is already hbase.client.max.perregion.tasks writes in progress for this region, new puts won't be sent to this region until some writes finishes.

Default. 1

hbase.client.scanner.caching

Number of rows that will be fetched when calling next on a scanner if it is not served from (local, client) memory. Higher caching values will enable faster scanners but will eat up more memory and some calls of next may take longer and longer times when the cache is empty. Do not set this value such that the time between invocations is greater than the scanner timeout; i.e. hbase.client.scanner.timeout.period

Default. 100

hbase.client.keyvalue.maxsize

Specifies the combined maximum allowed size of a KeyValue instance. This is to set an upper boundary for a single entry saved in a storage file. Since they cannot be split it helps avoiding that a region cannot be split any further because the data is too large. It seems wise to set this to a fraction of the maximum region size. Setting it to zero or less disables the check.

Default. 10485760

hbase.client.scanner.timeout.period

Client scanner lease period in milliseconds.

Default. 60000

hbase.client.localityCheck.threadPoolSize

Default. 2

hbase.bulkload.retries.number

Maximum retries. This is maximum number of iterations to atomic bulk loads are attempted in the face of splitting operations 0 means never give up.

Default. 0

hbase.balancer.period

Period at which the region balancer runs in the Master.

Default. 300000

hbase.regions.slop

Rebalance if any regionserver has average + (average * slop) regions.

Default. 0.2

hbase.server.thread.wakefrequency

Time to sleep in between searches for work (in milliseconds). Used as sleep interval by service threads such as log roller.

Default. 10000

hbase.server.versionfile.writeattempts

How many time to retry attempting to write a version file before just aborting. Each attempt is seperated by the hbase.server.thread.wakefrequency milliseconds.

Default. 3

hbase.hregion.memstore.flush.size

Memstore will be flushed to disk if size of the memstore exceeds this number of bytes. Value is checked by a thread that runs every hbase.server.thread.wakefrequency.

Default. 134217728

hbase.hregion.preclose.flush.size

If the memstores in a region are this size or larger when we go to close, run a "pre-flush" to clear out memstores before we put up the region closed flag and take the region offline. On close, a flush is run under the close flag to empty memory. During this time the region is offline and we are not taking on any writes. If the memstore content is large, this flush could take a long time to complete. The preflush is meant to clean out the bulk of the memstore before putting up the close flag and taking the region offline so the flush that runs under the close flag has little to do.

Default. 5242880

hbase.hregion.memstore.block.multiplier

Block updates if memstore has hbase.hregion.memstore.block.multiplier times hbase.hregion.memstore.flush.size bytes. Useful preventing runaway memstore during spikes in update traffic. Without an upper-bound, memstore fills such that when it flushes the resultant flush files take a long time to compact or split, or worse, we OOME.

Default. 4

hbase.hregion.memstore.mslab.enabled

Enables the MemStore-Local Allocation Buffer, a feature which works to prevent heap fragmentation under heavy write loads. This can reduce the frequency of stop-the-world GC pauses on large heaps.

Default. true

hbase.hregion.max.filesize

Maximum HFile size. If the sum of the sizes of a region's HFiles has grown to exceed this value, the region is split in two.

Default. 10737418240

hbase.hregion.majorcompaction

Time between major compactions, expressed in milliseconds. Set to 0 to disable time-based automatic major compactions. User-requested and size-based major compactions will still run. This value is multiplied by hbase.hregion.majorcompaction.jitter to cause compaction to start at a somewhat-random time during a given window of time. The default value is 7 days, expressed in milliseconds. If major compactions are causing disruption in your environment, you can configure them to run at off-peak times for your deployment, or disable time-based major compactions by setting this parameter to 0, and run major compactions in a cron job or by another external mechanism.

Default. 604800000

hbase.hregion.majorcompaction.jitter

A multiplier applied to hbase.hregion.majorcompaction to cause compaction to occur a given amount of time either side of hbase.hregion.majorcompaction. The smaller the number, the closer the compactions will happen to the hbase.hregion.majorcompaction interval.

Default. 0.50

hbase.hstore.compactionThreshold

If more than this number of StoreFiles exist in any one Store (one StoreFile is written per flush of MemStore), a compaction is run to rewrite all StoreFiles into a single StoreFile. Larger values delay compaction, but when compaction does occur, it takes longer to complete.

Default. 3

hbase.hstore.flusher.count

The number of flush threads. With fewer threads, the MemStore flushes will be queued. With more threads, the flushes will be executed in parallel, increasing the load on HDFS, and potentially causing more compactions.

Default. 2

hbase.hstore.blockingStoreFiles

If more than this number of StoreFiles exist in any one Store (one StoreFile is written per flush of MemStore), updates are blocked for this region until a compaction is completed, or until hbase.hstore.blockingWaitTime has been exceeded.

Default. 10

hbase.hstore.blockingWaitTime

The time for which a region will block updates after reaching the StoreFile limit defined by hbase.hstore.blockingStoreFiles. After this time has elapsed, the region will stop blocking updates even if a compaction has not been completed.

Default. 90000

hbase.hstore.compaction.min

The minimum number of StoreFiles which must be eligible for compaction before compaction can run. The goal of tuning hbase.hstore.compaction.min is to avoid ending up with too many tiny StoreFiles to compact. Setting this value to 2 would cause a minor compaction each time you have two StoreFiles in a Store, and this is probably not appropriate. If you set this value too high, all the other values will need to be adjusted accordingly. For most cases, the default value is appropriate. In previous versions of HBase, the parameter hbase.hstore.compaction.min was named hbase.hstore.compactionThreshold.

Default. 3

hbase.hstore.compaction.max

The maximum number of StoreFiles which will be selected for a single minor compaction, regardless of the number of eligible StoreFiles. Effectively, the value of hbase.hstore.compaction.max controls the length of time it takes a single compaction to complete. Setting it larger means that more StoreFiles are included in a compaction. For most cases, the default value is appropriate.

Default. 10

hbase.hstore.compaction.min.size

A StoreFile smaller than this size will always be eligible for minor compaction. HFiles this size or larger are evaluated by hbase.hstore.compaction.ratio to determine if they are eligible. Because this limit represents the "automatic include"limit for all StoreFiles smaller than this value, this value may need to be reduced in write-heavy environments where many StoreFiles in the 1-2 MB range are being flushed, because every StoreFile will be targeted for compaction and the resulting StoreFiles may still be under the minimum size and require further compaction. If this parameter is lowered, the ratio check is triggered more quickly. This addressed some issues seen in earlier versions of HBase but changing this parameter is no longer necessary in most situations. Default: 128 MB expressed in bytes.

Default. 134217728

hbase.hstore.compaction.max.size

A StoreFile larger than this size will be excluded from compaction. The effect of raising hbase.hstore.compaction.max.size is fewer, larger StoreFiles that do not get compacted often. If you feel that compaction is happening too often without much benefit, you can try raising this value. Default: the value of LONG.MAX_VALUE, expressed in bytes.

Default. 9223372036854775807

hbase.hstore.compaction.ratio

For minor compaction, this ratio is used to determine whether a given StoreFile which is larger than hbase.hstore.compaction.min.size is eligible for compaction. Its effect is to limit compaction of large StoreFiles. The value of hbase.hstore.compaction.ratio is expressed as a floating-point decimal. A large ratio, such as 10, will produce a single giant StoreFile. Conversely, a low value, such as .25, will produce behavior similar to the BigTable compaction algorithm, producing four StoreFiles. A moderate value of between 1.0 and 1.4 is recommended. When tuning this value, you are balancing write costs with read costs. Raising the value (to something like 1.4) will have more write costs, because you will compact larger StoreFiles. However, during reads, HBase will need to seek through fewer StoreFiles to accomplish the read. Consider this approach if you cannot take advantage of Bloom filters. Otherwise, you can lower this value to something like 1.0 to reduce the background cost of writes, and use Bloom filters to control the number of StoreFiles touched during reads. For most cases, the default value is appropriate.

Default. 1.2F

hbase.hstore.compaction.ratio.offpeak

Allows you to set a different (by default, more aggressive) ratio for determining whether larger StoreFiles are included in compactions during off-peak hours. Works in the same way as hbase.hstore.compaction.ratio. Only applies if hbase.offpeak.start.hour and hbase.offpeak.end.hour are also enabled.

Default. 5.0F

hbase.hstore.time.to.purge.deletes

The amount of time to delay purging of delete markers with future timestamps. If unset, or set to 0, all delete markers, including those with future timestamps, are purged during the next major compaction. Otherwise, a delete marker is kept until the major compaction which occurs after the marker's timestamp plus the value of this setting, in milliseconds.

Default. 0

hbase.offpeak.start.hour

The start of off-peak hours, expressed as an integer between 0 and 23, inclusive. Set to -1 to disable off-peak.

Default. -1

hbase.offpeak.end.hour

The end of off-peak hours, expressed as an integer between 0 and 23, inclusive. Set to -1 to disable off-peak.

Default. -1

hbase.regionserver.thread.compaction.throttle

There are two different thread pools for compactions, one for large compactions and the other for small compactions. This helps to keep compaction of lean tables (such as hbase:meta) fast. If a compaction is larger than this threshold, it goes into the large compaction pool. In most cases, the default value is appropriate. Default: 2 x hbase.hstore.compaction.max x hbase.hregion.memstore.flush.size (which defaults to 128). The value field assumes that the value of hbase.hregion.memstore.flush.size is unchanged from the default.

Default. 2560

hbase.hstore.compaction.kv.max

The maximum number of KeyValues to read and then write in a batch when flushing or compacting. Set this lower if you have big KeyValues and problems with Out Of Memory Exceptions Set this higher if you have wide, small rows.

Default. 10

hbase.storescanner.parallel.seek.enable

Enables StoreFileScanner parallel-seeking in StoreScanner, a feature which can reduce response latency under special conditions.

Default. false

hbase.storescanner.parallel.seek.threads

The default thread pool size if parallel-seeking feature enabled.

Default. 10

hfile.block.cache.size

Percentage of maximum heap (-Xmx setting) to allocate to block cache used by a StoreFile. Default of 0.4 means allocate 40%. Set to 0 to disable but it's not recommended; you need at least enough cache to hold the storefile indices.

Default. 0.4

hfile.block.index.cacheonwrite

This allows to put non-root multi-level index blocks into the block cache at the time the index is being written.

Default. false

hfile.index.block.max.size

When the size of a leaf-level, intermediate-level, or root-level index block in a multi-level block index grows to this size, the block is written out and a new block is started.

Default. 131072

hbase.bucketcache.ioengine

Where to store the contents of the bucketcache. One of: onheap, offheap, or file. If a file, set it to file:PATH_TO_FILE. See https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/io/hfile/CacheConfig.html for more information.

Default. 

hbase.bucketcache.combinedcache.enabled

Whether or not the bucketcache is used in league with the LRU on-heap block cache. In this mode, indices and blooms are kept in the LRU blockcache and the data blocks are kept in the bucketcache.

Default. true

hbase.bucketcache.size

The size of the buckets for the bucketcache if you only use a single size. Defaults to the default blocksize, which is 64 * 1024.

Default. 65536

hbase.bucketcache.sizes

A comma-separated list of sizes for buckets for the bucketcache if you use multiple sizes. Should be a list of block sizes in order from smallest to largest. The sizes you use will depend on your data access patterns.

Default. 

hfile.format.version

The HFile format version to use for new files. Version 3 adds support for tags in hfiles (See http://hbase.apache.org/book.html#hbase.tags). Distributed Log Replay requires that tags are enabled. Also see the configuration 'hbase.replication.rpc.codec'.

Default. 3

hfile.block.bloom.cacheonwrite

Enables cache-on-write for inline blocks of a compound Bloom filter.

Default. false

io.storefile.bloom.block.size

The size in bytes of a single block ("chunk") of a compound Bloom filter. This size is approximate, because Bloom blocks can only be inserted at data block boundaries, and the number of keys per data block varies.

Default. 131072

hbase.rs.cacheblocksonwrite

Whether an HFile block should be added to the block cache when the block is finished.

Default. false

hbase.rpc.timeout

This is for the RPC layer to define how long HBase client applications take for a remote call to time out. It uses pings to check connections but will eventually throw a TimeoutException.

Default. 60000

hbase.rpc.shortoperation.timeout

This is another version of "hbase.rpc.timeout". For those RPC operation within cluster, we rely on this configuration to set a short timeout limitation for short operation. For example, short rpc timeout for region server's trying to report to active master can benefit quicker master failover process.

Default. 10000

hbase.ipc.client.tcpnodelay

Set no delay on rpc socket connections. See http://docs.oracle.com/javase/1.5.0/docs/api/java/net/Socket.html#getTcpNoDelay()

Default. true

hbase.master.keytab.file

Full path to the kerberos keytab file to use for logging in the configured HMaster server principal.

Default. 

hbase.master.kerberos.principal

Ex. "hbase/_HOST@EXAMPLE.COM". The kerberos principal name that should be used to run the HMaster process. The principal name should be in the form: user/hostname@DOMAIN. If "_HOST" is used as the hostname portion, it will be replaced with the actual hostname of the running instance.

Default. 

hbase.regionserver.keytab.file

Full path to the kerberos keytab file to use for logging in the configured HRegionServer server principal.

Default. 

hbase.regionserver.kerberos.principal

Ex. "hbase/_HOST@EXAMPLE.COM". The kerberos principal name that should be used to run the HRegionServer process. The principal name should be in the form: user/hostname@DOMAIN. If "_HOST" is used as the hostname portion, it will be replaced with the actual hostname of the running instance. An entry for this principal must exist in the file specified in hbase.regionserver.keytab.file

Default. 

hadoop.policy.file

The policy configuration file used by RPC servers to make authorization decisions on client requests. Only used when HBase security is enabled.

Default. hbase-policy.xml

hbase.superuser

List of users or groups (comma-separated), who are allowed full privileges, regardless of stored ACLs, across the cluster. Only used when HBase security is enabled.

Default. 

hbase.auth.key.update.interval

The update interval for master key for authentication tokens in servers in milliseconds. Only used when HBase security is enabled.

Default. 86400000

hbase.auth.token.max.lifetime

The maximum lifetime in milliseconds after which an authentication token expires. Only used when HBase security is enabled.

Default. 604800000

hbase.ipc.client.fallback-to-simple-auth-allowed

When a client is configured to attempt a secure connection, but attempts to connect to an insecure server, that server may instruct the client to switch to SASL SIMPLE (unsecure) authentication. This setting controls whether or not the client will accept this instruction from the server. When false (the default), the client will not allow the fallback to SIMPLE authentication, and will abort the connection.

Default. false

hbase.display.keys

When this is set to true the webUI and such will display all start/end keys as part of the table details, region names, etc. When this is set to false, the keys are hidden.

Default. true

hbase.coprocessor.region.classes

A comma-separated list of Coprocessors that are loaded by default on all tables. For any override coprocessor method, these classes will be called in order. After implementing your own Coprocessor, just put it in HBase's classpath and add the fully qualified class name here. A coprocessor can also be loaded on demand by setting HTableDescriptor.

Default. 

hbase.rest.port

The port for the HBase REST server.

Default. 8080

hbase.rest.readonly

Defines the mode the REST server will be started in. Possible values are: false: All HTTP methods are permitted - GET/PUT/POST/DELETE. true: Only the GET method is permitted.

Default. false

hbase.rest.threads.max

The maximum number of threads of the REST server thread pool. Threads in the pool are reused to process REST requests. This controls the maximum number of requests processed concurrently. It may help to control the memory used by the REST server to avoid OOM issues. If the thread pool is full, incoming requests will be queued up and wait for some free threads.

Default. 100

hbase.rest.threads.min

The minimum number of threads of the REST server thread pool. The thread pool always has at least these number of threads so the REST server is ready to serve incoming requests.

Default. 2

hbase.rest.support.proxyuser

Enables running the REST server to support proxy-user mode.

Default. false

hbase.defaults.for.version.skip

Set to true to skip the 'hbase.defaults.for.version' check. Setting this to true can be useful in contexts other than the other side of a maven generation; i.e. running in an ide. You'll want to set this boolean to true to avoid seeing the RuntimException complaint: "hbase-default.xml file seems to be for and old version of HBase (\${hbase.version}), this version is X.X.X-SNAPSHOT"

Default. false

hbase.coprocessor.master.classes

A comma-separated list of org.apache.hadoop.hbase.coprocessor.MasterObserver coprocessors that are loaded by default on the active HMaster process. For any implemented coprocessor methods, the listed classes will be called in order. After implementing your own MasterObserver, just put it in HBase's classpath and add the fully qualified class name here.

Default. 

hbase.coprocessor.abortonerror

Set to true to cause the hosting server (master or regionserver) to abort if a coprocessor fails to load, fails to initialize, or throws an unexpected Throwable object. Setting this to false will allow the server to continue execution but the system wide state of the coprocessor in question will become inconsistent as it will be properly executing in only a subset of servers, so this is most useful for debugging only.

Default. true

hbase.online.schema.update.enable

Set true to enable online schema changes.

Default. true

hbase.table.lock.enable

Set to true to enable locking the table in zookeeper for schema change operations. Table locking from master prevents concurrent schema modifications to corrupt table state.

Default. true

hbase.table.max.rowsize

Maximum size of single row in bytes (default is 1 Gb) for Get'ting or Scan'ning without in-row scan flag set. If row size exceeds this limit RowTooBigException is thrown to client.

Default. 1073741824

hbase.thrift.minWorkerThreads

The "core size" of the thread pool. New threads are created on every connection until this many threads are created.

Default. 16

hbase.thrift.maxWorkerThreads

The maximum size of the thread pool. When the pending request queue overflows, new threads are created until their number reaches this number. After that, the server starts dropping connections.

Default. 1000

hbase.thrift.maxQueuedRequests

The maximum number of pending Thrift connections waiting in the queue. If there are no idle threads in the pool, the server queues requests. Only when the queue overflows, new threads are added, up to hbase.thrift.maxQueuedRequests threads.

Default. 1000

hbase.thrift.htablepool.size.max

The upper bound for the table pool used in the Thrift gateways server. Since this is per table name, we assume a single table and so with 1000 default worker threads max this is set to a matching number. For other workloads this number can be adjusted as needed.

Default. 1000

hbase.regionserver.thrift.framed

Use Thrift TFramedTransport on the server side. This is the recommended transport for thrift servers and requires a similar setting on the client side. Changing this to false will select the default transport, vulnerable to DoS when malformed requests are issued due to THRIFT-601.

Default. false

hbase.regionserver.thrift.framed.max_frame_size_in_mb

Default frame size when using framed transport

Default. 2

hbase.regionserver.thrift.compact

Use Thrift TCompactProtocol binary serialization protocol.

Default. false

hbase.data.umask.enable

Enable, if true, that file permissions should be assigned to the files written by the regionserver

Default. false

hbase.data.umask

File permissions that should be used to write data files when hbase.data.umask.enable is true

Default. 000

hbase.metrics.showTableName

Whether to include the prefix "tbl.tablename" in per-column family metrics. If true, for each metric M, per-cf metrics will be reported for tbl.T.cf.CF.M, if false, per-cf metrics will be aggregated by column-family across tables, and reported for cf.CF.M. In both cases, the aggregated metric M across tables and cfs will be reported.

Default. true

hbase.metrics.exposeOperationTimes

Whether to report metrics about time taken performing an operation on the region server. Get, Put, Delete, Increment, and Append can all have their times exposed through Hadoop metrics per CF and per region.

Default. true

hbase.snapshot.enabled

Set to true to allow snapshots to be taken / restored / cloned.

Default. true

hbase.snapshot.restore.take.failsafe.snapshot

Set to true to take a snapshot before the restore operation. The snapshot taken will be used in case of failure, to restore the previous state. At the end of the restore operation this snapshot will be deleted

Default. true

hbase.snapshot.restore.failsafe.name

Name of the failsafe snapshot taken by the restore operation. You can use the {snapshot.name}, {table.name} and {restore.timestamp} variables to create a name based on what you are restoring.

Default. hbase-failsafe-{snapshot.name}-{restore.timestamp}

hbase.server.compactchecker.interval.multiplier

The number that determines how often we scan to see if compaction is necessary. Normally, compactions are done after some events (such as memstore flush), but if region didn't receive a lot of writes for some time, or due to different compaction policies, it may be necessary to check it periodically. The interval between checks is hbase.server.compactchecker.interval.multiplier multiplied by hbase.server.thread.wakefrequency.

Default. 1000

hbase.lease.recovery.timeout

How long we wait on dfs lease recovery in total before giving up.

Default. 900000

hbase.lease.recovery.dfs.timeout

How long between dfs recover lease invocations. Should be larger than the sum of the time it takes for the namenode to issue a block recovery command as part of datanode; dfs.heartbeat.interval and the time it takes for the primary datanode, performing block recovery to timeout on a dead datanode; usually dfs.client.socket-timeout. See the end of HBASE-8389 for more.

Default. 64000

hbase.column.max.version

New column family descriptors will use this value as the default number of versions to keep.

Default. 1

hbase.dfs.client.read.shortcircuit.buffer.size

If the DFSClient configuration dfs.client.read.shortcircuit.buffer.size is unset, we will use what is configured here as the short circuit read default direct byte buffer size. DFSClient native default is 1MB; HBase keeps its HDFS files open so number of file blocks * 1MB soon starts to add up and threaten OOME because of a shortage of direct memory. So, we set it down from the default. Make it > the default hbase block size set in the HColumnDescriptor which is usually 64k.

Default. 131072

hbase.regionserver.checksum.verify

If set to true (the default), HBase verifies the checksums for hfile blocks. HBase writes checksums inline with the data when it writes out hfiles. HDFS (as of this writing) writes checksums to a separate file than the data file necessitating extra seeks. Setting this flag saves some on i/o. Checksum verification by HDFS will be internally disabled on hfile streams when this flag is set. If the hbase-checksum verification fails, we will switch back to using HDFS checksums (so do not disable HDFS checksums! And besides this feature applies to hfiles only, not to WALs). If this parameter is set to false, then hbase will not verify any checksums, instead it will depend on checksum verification being done in the HDFS client.

Default. true

hbase.hstore.bytes.per.checksum

Number of bytes in a newly created checksum chunk for HBase-level checksums in hfile blocks.

Default. 16384

hbase.hstore.checksum.algorithm

Name of an algorithm that is used to compute checksums. Possible values are NULL, CRC32, CRC32C.

Default. CRC32

hbase.status.published

This setting activates the publication by the master of the status of the region server. When a region server dies and its recovery starts, the master will push this information to the client application, to let them cut the connection immediately instead of waiting for a timeout.

Default. false

hbase.status.publisher.class

Implementation of the status publication with a multicast message.

Default. org.apache.hadoop.hbase.master.ClusterStatusPublisher$MulticastPublisher

hbase.status.listener.class

Implementation of the status listener with a multicast message.

Default. org.apache.hadoop.hbase.client.ClusterStatusListener$MulticastListener

hbase.status.multicast.address.ip

Multicast address to use for the status publication by multicast.

Default. 226.1.1.3

hbase.status.multicast.address.port

Multicast port to use for the status publication by multicast.

Default. 16100

hbase.dynamic.jars.dir

The directory from which the custom filter/co-processor jars can be loaded dynamically by the region server without the need to restart. However, an already loaded filter/co-processor class would not be un-loaded. See HBASE-1936 for more details.

Default. ${hbase.rootdir}/lib

hbase.security.authentication

Controls whether or not secure authentication is enabled for HBase. Possible values are 'simple' (no authentication), and 'kerberos'.

Default. simple

hbase.rest.filter.classes

Servlet filters for REST service.

Default. org.apache.hadoop.hbase.rest.filter.GzipFilter

hbase.master.loadbalancer.class

Class used to execute the regions balancing when the period occurs. See the class comment for more on how it works http://hbase.apache.org/devapidocs/org/apache/hadoop/hbase/master/balancer/StochasticLoadBalancer.html It replaces the DefaultLoadBalancer as the default (since renamed as the SimpleLoadBalancer).

Default. org.apache.hadoop.hbase.master.balancer.StochasticLoadBalancer

hbase.security.exec.permission.checks

If this setting is enabled and ACL based access control is active (the AccessController coprocessor is installed either as a system coprocessor or on a table as a table coprocessor) then you must grant all relevant users EXEC privilege if they require the ability to execute coprocessor endpoint calls. EXEC privilege, like any other permission, can be granted globally to a user, or to a user on a per table or per namespace basis. For more information on coprocessor endpoints, see the coprocessor section of the HBase online manual. For more information on granting or revoking permissions using the AccessController, see the security section of the HBase online manual.

Default. false

hbase.procedure.regionserver.classes

A comma-separated list of org.apache.hadoop.hbase.procedure.RegionServerProcedureManager procedure managers that are loaded by default on the active HRegionServer process. The lifecycle methods (init/start/stop) will be called by the active HRegionServer process to perform the specific globally barriered procedure. After implementing your own RegionServerProcedureManager, just put it in HBase's classpath and add the fully qualified class name here.

Default. 

hbase.procedure.master.classes

A comma-separated list of org.apache.hadoop.hbase.procedure.MasterProcedureManager procedure managers that are loaded by default on the active HMaster process. A procedure is identified by its signature and users can use the signature and an instant name to trigger an execution of a globally barriered procedure. After implementing your own MasterProcedureManager, just put it in HBase's classpath and add the fully qualified class name here.

Default. 

hbase.coordinated.state.manager.class

Fully qualified name of class implementing coordinated state manager.

Default. org.apache.hadoop.hbase.coordination.ZkCoordinatedStateManager

hbase.regionserver.storefile.refresh.period

The period (in milliseconds) for refreshing the store files for the secondary regions. 0 means this feature is disabled. Secondary regions sees new files (from flushes and compactions) from primary once the secondary region refreshes the list of files in the region (there is no notification mechanism). But too frequent refreshes might cause extra Namenode pressure. If the files cannot be refreshed for longer than HFile TTL (hbase.master.hfilecleaner.ttl) the requests are rejected. Configuring HFile TTL to a larger value is also recommended with this setting.

Default. 0

hbase.region.replica.replication.enabled

Whether asynchronous WAL replication to the secondary region replicas is enabled or not. If this is enabled, a replication peer named "region_replica_replication" will be created which will tail the logs and replicate the mutatations to region replicas for tables that have region replication > 1. If this is enabled once, disabling this replication also requires disabling the replication peer using shell or ReplicationAdmin java class. Replication to secondary region replicas works over standard inter-cluster replication. So replication, if disabled explicitly, also has to be enabled by setting "hbase.replication" to true for this feature to work.

Default. false

hbase.http.filter.initializers

A comma separated list of class names. Each class in the list must extend org.apache.hadoop.hbase.http.FilterInitializer. The corresponding Filter will be initialized. Then, the Filter will be applied to all user facing jsp and servlet web pages. The ordering of the list defines the ordering of the filters. The default StaticUserWebFilter add a user principal as defined by the hbase.http.staticuser.user property.

Default. org.apache.hadoop.hbase.http.lib.StaticUserWebFilter

hbase.security.visibility.mutations.checkauths

This property if enabled, will check whether the labels in the visibility expression are associated with the user issuing the mutation

Default. false

hbase.http.max.threads

The maximum number of threads that the HTTP Server will create in its ThreadPool.

Default. 10

hbase.replication.rpc.codec

The codec that is to be used when replication is enabled so that the tags are also replicated. This is used along with HFileV3 which supports tags in them. If tags are not used or if the hfile version used is HFileV2 then KeyValueCodec can be used as the replication codec. Note that using KeyValueCodecWithTags for replication when there are no tags causes no harm.

Default. org.apache.hadoop.hbase.codec.KeyValueCodecWithTags

hbase.http.staticuser.user

The user name to filter as, on static web filters while rendering content. An example use is the HDFS web UI (user to be used for browsing files).

Default. dr.stack

2.4.2. hbase-env.sh

Set HBase environment variables in this file. Examples include options to pass the JVM on start of an HBase daemon such as heap size and garbage collector configs. You can also set configurations for HBase configuration, log directories, niceness, ssh options, where to locate process pid files, etc. Open the file at conf/hbase-env.sh and peruse its content. Each option is fairly well documented. Add your own environment variables here if you want them read by HBase daemons on startup.

Changes here will require a cluster restart for HBase to notice the change.

2.4.3. log4j.properties

Edit this file to change rate at which HBase files are rolled and to change the level at which HBase logs messages.

Changes here will require a cluster restart for HBase to notice the change though log levels can be changed for particular daemons via the HBase UI.

2.4.4. Client configuration and dependencies connecting to an HBase cluster

If you are running HBase in standalone mode, you don't need to configure anything for your client to work provided that they are all on the same machine.

Since the HBase Master may move around, clients bootstrap by looking to ZooKeeper for current critical locations. ZooKeeper is where all these values are kept. Thus clients require the location of the ZooKeeper ensemble information before they can do anything else. Usually this the ensemble location is kept out in the hbase-site.xml and is picked up by the client from the CLASSPATH.

If you are configuring an IDE to run a HBase client, you should include the conf/ directory on your classpath so hbase-site.xml settings can be found (or add src/test/resources to pick up the hbase-site.xml used by tests).

Minimally, a client of HBase needs several libraries in its CLASSPATH when connecting to a cluster, including:

commons-configuration (commons-configuration-1.6.jar)
commons-lang (commons-lang-2.5.jar)
commons-logging (commons-logging-1.1.1.jar)
hadoop-core (hadoop-core-1.0.0.jar)
hbase (hbase-0.92.0.jar)
log4j (log4j-1.2.16.jar)
slf4j-api (slf4j-api-1.5.8.jar)
slf4j-log4j (slf4j-log4j12-1.5.8.jar)
zookeeper (zookeeper-3.4.2.jar)

An example basic hbase-site.xml for client only might look as follows:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
  <property>
    <name>hbase.zookeeper.quorum</name>
    <value>example1,example2,example3</value>
    <description>The directory shared by region servers.
    </description>
  </property>
</configuration>

2.4.4.1. Java client configuration

The configuration used by a Java client is kept in an HBaseConfiguration instance. The factory method on HBaseConfiguration, HBaseConfiguration.create();, on invocation, will read in the content of the first hbase-site.xml found on the client's CLASSPATH, if one is present (Invocation will also factor in any hbase-default.xml found; an hbase-default.xml ships inside the hbase.X.X.X.jar). It is also possible to specify configuration directly without having to read from a hbase-site.xml. For example, to set the ZooKeeper ensemble for the cluster programmatically do as follows:

Configuration config = HBaseConfiguration.create();
config.set("hbase.zookeeper.quorum", "localhost");  // Here we are running zookeeper locally

If multiple ZooKeeper instances make up your ZooKeeper ensemble, they may be specified in a comma-separated list (just as in the hbase-site.xml file). This populated Configuration instance can then be passed to an HTable, and so on.

comments powered by Disqus